K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

Đáp án B

26 tháng 9 2017

Chọn B

Vì y =  a x 3 + c x + d ,   a ≠ 0  là hàm số bậc ba và có  m i n x ∈ - ∞ ; 0   f ( x )   =   f ( - 2 ) nên a < 0 và y' = 0   có hai nghiệm phân biệt.

Ta có  có hai nghiệm phân biệt  ⇔ ac < 0

Vậy với a < 0, c > 0 thì y' = 0 có hai nghiệm đối nhau 

Từ đó suy ra


⇔ c = -12a

Ta có bảng biến thiên

Ta suy ra 

9 tháng 3 2017

Ta có bảng biến thiên như hình vẽ sau:

Giá trị nhỏ nhất của hàm số là f( b)  nhưng giá trị lớn nhất có thể là f (a) hoặc f( e)  Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d)   nên f(a) - f( d)) = f( b) - f(  c)< 0

Suy ra : f( a) < f( d) < f( e)  

Vậy  m a x [ a ; e ]   f ( x ) = f ( e ) ;   m i n [ a ; e ]   f ( x ) = f ( b )

Chọn  C.

27 tháng 9 2019

29 tháng 3 2018

Chọn B

Ta có .

Dấu = xảy ra khi A=B.

Ta có .

Dấu = xảy ra khi A= -B.

Xét hàm số , có .

Trường hợp 1: .

Khi đó .

Áp dụng bất đẳng thức (1) ta có .

Trường hợp 2: .

Khi đó .

Áp dụng bất đẳng thức (1) và(2) ta có

.

Suy ra .

Vậy M nhận giá trị nhỏ nhất khi

.

Do đó .

21 tháng 4 2018

12 tháng 4 2017

Đáp án D

Phương pháp:

Dựa vào đồ thị hàm số ta xác định được điểm cao nhất và điểm thấp nhất của đồ thị trên đoạn [-1;3]

Tung độ điểm cao nhất là giá trị lớn nhất của hàm số, tung độ điểm thấp nhất là giá trị nhỏ nhất của hàm số trên đoạn [-1;3].

Từ đó ta tìm được: M;m => M-m

Cách giải:

Từ đồ thị hàm số ta thấy trên đoạn [-1;3] thì điểm cao nhất của đồ thị là điểm A(3;3) và  điểm thấp nhất của đồ thị là B(2;-2) nên GTLN của hàm số là M=3 và GTNN của hàm số là m = -2 

Từ đó M - m = 3 - (-2) = 5

26 tháng 6 2017

Chọn A

+ Từ đồ thị của đạo hàm  ta lập được bảng biến thiên như sau

+ Dựa vào BBT ta suy ra giá trị lớn nhất của hàm số trên đoạn [-1;3] là f(0)

5 tháng 5 2018

Chọn C

Xét hàm số f(x) = | x 2 + a x + b |. Theo đề bài, M là giá trị lớn nhất của hàm số trên [-1;3]

Suy ra 

Nếu M = 2 thì điều kiện cần là  và  cùng dấu

Ngược lại, khi 

Ta có, hàm số 

M là giá trị lớn nhất của hàm số f(x) trên [-1;3] 

Vậy 

Ta có: a + 2b = -4.