K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

\(B=-x^2-x+5=-\left(x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}-\frac{1}{4}-5\right)=-\left(x+\frac{1}{2}\right)^2+5\frac{1}{4}\le5\frac{1}{4}\)
vậy để b max thì \(-\left(x+\frac{1}{2}\right)^2max\) mà \(-\left(x+\frac{1}{2}\right)^2\le0\)nên suy ra \(-\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

28 tháng 10 2022

\(B=-x^2-x+5\)

\(=-\left(x^2+x-5\right)\)

\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{21}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{21}{4}< =\dfrac{21}{4}\)

Dấu = xảy ra khi x=-0,5

26 tháng 12 2016

đặt \(\sqrt{3-x}=t\Rightarrow t^2=3-x=>x=3-t^2\)  ĐK x<=3=> t>=0

E=t+3-t^2

E=3+1/4-(t-1/2)^2

=> E>=13/4 khi t=1/2=> x=11/4

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

23 tháng 7 2016

\(A=-x+\sqrt{x}+2\left(ĐK:x\ge0\right)\\ =-\left(x-\sqrt{x}-2\right)\\ =-\left(x-\sqrt{x}+\frac{1}{4}-\frac{9}{4}\right)\\ =-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{9}{4}\\ =-\left(\sqrt{x}-\frac{1}{2}\right)^2+2,25\)

Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)   với mọi x\(\ge\)0

=> \(-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)   vowis mọi x\(\ge0\)

=> \(-\left(x-\frac{1}{2}\right)^2+2,25\le2,25\)    với mọi x\(\ge0\)

Vậy GTLN của A là 2,25 khi x=\(\frac{1}{2}\)

 

23 tháng 7 2016

thanks p nha

29 tháng 10 2021

X=1,2

29 tháng 10 2021

Ưmmm hình như sai

18 tháng 9 2018

\(\frac{x+1}{x-1}=\frac{7}{3}\)

=> \(3.\left(x+1\right)=7.\left(x-1\right)\)

=> \(3x+3=7x-7\)

=> \(3x+10=7x\)

=> \(4x=10\)

=> \(x=\frac{10}{4}=\frac{5}{2}\)

Vậy \(x=\frac{5}{2}\)

18 tháng 9 2018

\(\frac{x+1}{x-1}=\frac{7}{3}\)

\(\Rightarrow3\left(x+1\right)=7\left(x-1\right)\)

\(\Leftrightarrow3x+3=7x-7\)

\(\Leftrightarrow-4x=-10\)

\(\Leftrightarrow x=\frac{5}{2}\)

~~~!!!