K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

      Áp dụng bất đẳng thức |m|+ |n|≥ |m + n| .Dấu = xảy ra khi m,n cùng dấu

     A ≥ |x − a + x − b|+ |x − c + x − d| = |2x − a − b|+ |c + d − 2x| ≥ |2x − a − b − 2x + c + d| =|c + d − a − b|

     Dấu = xảy ra khi x − a và x − b cùng dấu hay(x ≤ a hoặc x ≥ b)

                         x − c và x − d cùng dấu hay(x ≤ c hoặc x ≥ d)

                       2x − a − b và c + d − 2x cùng dấu hay (x + b ≤ 2x ≤ c + d)

        Vậy Min A =c+d-a-b khi b ≤ x ≤ c 

~ Học tốt ~ K cho mk nha. Thank you.

9 tháng 5 2019

Bạn "  I love Family " ơi, đề bài ng' ta chỉ cho a,b,c,d là các số dương thôi mà sao cách giải giống với kiểu đềa<b<c<d trên mạng vậy?
 

13 tháng 10 2021

a) \(\Rightarrow\left(x-3\right)\left(x+4\right)=5.12\)

\(\Rightarrow x^2+x-72=0\)

\(\Rightarrow\left(x-8\right)\left(x+9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-9\end{matrix}\right.\)

b) \(\Rightarrow\left(x+3\right)^2=36\)

\(\Rightarrow\left[{}\begin{matrix}x+3=6\\x+3=-6\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-9\end{matrix}\right.\)

c) \(\Rightarrow2x^2=8\Rightarrow x^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

13 tháng 10 2021

em cảm ơn nhiều ạ!

 

22 tháng 10 2021

bai tap nay lop may day

24 tháng 10 2021

Điên à 

14 tháng 8 2020

Gấp thì giúp đây ^_^ !!

+) Ta có : AM = BM ; M thuộc cạnh huyền BC 

=> AM là đường trung tuyến ứng với cạnh huyền BC

=> AM = BM = MC 

+) \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)

\(\Leftrightarrow90^o+30^o+\widehat{C}=180^o\)

\(\Leftrightarrow\widehat{C}=60^o\)

Xét tam giác AMC có :

\(\hept{\begin{cases}\widehat{C}=60^o\\AM=MC\end{cases}}\)

=> AMC là tam giác đều ( đpcm )

Theo đề bài ta có:

x^2=y.z ; y^2=x.z;z^2=x.y

\Rightarrowx.x=y.z

\Rightarrowy.y=x.z

\Rightarrowz.z=x.y

cân bằng phương trình x.x=y.z bằng cách nhân x vào cả hai vế ta có:

x.x.x=y.z.x \Rightarrow x^3=y.z.x

cân bằng phương trình y.y=x.z bằng cách nhân y vào cả hai vế ta có:

y.y.y=x.z.y \Rightarrow y^3=x.z.y

cân bằng phương trình z.z=x.y bằng cách nhân z vào cả hai vế ta có:

z.z.z=x.y.z \Rightarrow z^3=x.y.z

vì y.z.x=x.z.y=x.y.z

\Rightarrow x^3=y^3=z^3

Vì  x^3 ; y^3 ; z^3 Có cùng số mũ và bằng nhau

Nên các cơ số cũng bằng nhau

\Rightarrowx=y=z

Ta có: \(x^2=y\cdot z\)

nên \(z=\dfrac{x^2}{y}\)(1)

Ta có: \(y^2=z\cdot x\)

nên \(z=\dfrac{y^2}{x}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)

\(\Leftrightarrow x^3=y^3\)

hay x=y(3)

Ta có: \(x^2=y\cdot z\)

nên \(y=\dfrac{x^2}{z}\)(4)

Ta có: \(z^2=x\cdot y\)

nên \(y=\dfrac{z^2}{x}\)(5)

Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)

\(\Leftrightarrow x^3=z^3\)

hay x=z(6)

Từ (3) và (6) suy ra x=y=z(đpcm)

13 tháng 10 2021

Làm hết á!

 

13 tháng 10 2021

đúng rồi ạ, giúp em với ạ hoặc làm đc câu nào giúp em cũng được ạ

11 tháng 11 2017

Ta có \(A= \left|x-3\right|+\left|x+7\right|+\left|x+1\right|=\left(\left|x-3\right|+\left|x+7\right|\right)+\left|x+1\right|\)

\(=\left(\left|3-x\right|+\left|x+7\right|\right)+\left|x+1\right|\)

Ta thấy \(\left|3-x\right|+\left|x+7\right|\ge\left|3-x+x+7\right|=10\)

Dấu bằng xảy ra khi và chỉ khi \(\left(3-x\right).\left(x+7\right)\ge0\Leftrightarrow-7\le x\le3\)

Mà \(\left|x+1\right|\ge0\)nên \(A=\left|x-3\right|+\left|x+7\right|+\left|x+1\right|\ge0+4=4\)

Dấu bằng xảy ra khi và chỉ khi \(-7\le x\le3\)

Vậy GTNN  của A là 4 khi và chỉ khi \(-7\le x\le3\)

1 tháng 8 2021

Ta có : ax = by \(\Rightarrow\frac{x}{b}=\frac{y}{a}=\frac{x-y}{b-a}=1\left(\text{vì }x-y=b-a\right)\)

\(\Rightarrow x=b;y=a\)

Vậy x = b ; y = a