K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề bài ta có:

x^2=y.z ; y^2=x.z;z^2=x.y

\Rightarrowx.x=y.z

\Rightarrowy.y=x.z

\Rightarrowz.z=x.y

cân bằng phương trình x.x=y.z bằng cách nhân x vào cả hai vế ta có:

x.x.x=y.z.x \Rightarrow x^3=y.z.x

cân bằng phương trình y.y=x.z bằng cách nhân y vào cả hai vế ta có:

y.y.y=x.z.y \Rightarrow y^3=x.z.y

cân bằng phương trình z.z=x.y bằng cách nhân z vào cả hai vế ta có:

z.z.z=x.y.z \Rightarrow z^3=x.y.z

vì y.z.x=x.z.y=x.y.z

\Rightarrow x^3=y^3=z^3

Vì  x^3 ; y^3 ; z^3 Có cùng số mũ và bằng nhau

Nên các cơ số cũng bằng nhau

\Rightarrowx=y=z

Ta có: \(x^2=y\cdot z\)

nên \(z=\dfrac{x^2}{y}\)(1)

Ta có: \(y^2=z\cdot x\)

nên \(z=\dfrac{y^2}{x}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)

\(\Leftrightarrow x^3=y^3\)

hay x=y(3)

Ta có: \(x^2=y\cdot z\)

nên \(y=\dfrac{x^2}{z}\)(4)

Ta có: \(z^2=x\cdot y\)

nên \(y=\dfrac{z^2}{x}\)(5)

Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)

\(\Leftrightarrow x^3=z^3\)

hay x=z(6)

Từ (3) và (6) suy ra x=y=z(đpcm)

1 tháng 11 2015

\(x^2=y.z\Rightarrow\frac{x}{y}=\frac{z}{x}\)

tuong tự ta có\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)

=> dpcm

Lile nhá bạn

23 tháng 7 2016

a.

\(x^2+\left(y+z\right)x+yz=x^2+xy+xz+yz=\left(x+y\right)x+\left(x+y\right)z=\left(x+y\right)\left(x+z\right)\)

b.

\(\left(x-y\right)^3=x^3-3x^{2y}+3xy^2-y^3\) (lập phương của một hiệu)

\(\Rightarrow x^3-y^3=\left(x-y\right)^3+3x^2y-3xy^2=\left(x-y\right)^3+3xy\left(x-y\right)=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]=\left(x-y\right)\left(x^2-2xy+y^2+3xy\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\)

Chúc bạn học tốt  ^^

23 tháng 7 2016

a.

\(x^2+\left(y+z\right)x+yz=x^2+xy+xz+yz=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

b.

\(\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3\)(lập phương của một hiệu)

\(\Rightarrow x^3-y^3=\left(x-y\right)^3+3x^2y-3xy^2=\left(x-y\right)^3+3xy\left(x-y\right)=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]=\left(x-y\right)\left(x^2-2xy+y^2+3xy\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\)

Chúc bạn học tốt  ^^

1 tháng 4 2019

\(Gt\Rightarrow x^2+y^2+z^2=xy+yz+zx\)

   \(\Leftrightarrow2x^2+2y^2+2z^2-2xz-2yz-2zx=0\)

  \(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Do VT > 0 nên dấu "=" <=> x = y = z (DpcM)

8 tháng 4 2016

a/ \(C=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-1\right)\)

\(C=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-1\right)=x+y-1\) (do x+y-2=0)

Mà x+y-2=0 => x+y-1=1 => C=1

b/  Với x=2; y=2 Ta nhận thấy \(x^3-2y^2=2^3-2.2^2=2^3-2^3=0\) => D=0

31 tháng 3 2015

A + B + C = x2.y.z + x.y2.z + x.y.z2 = x.y.z.(x + y + z) = x.y.z .1 = xyz (Vì x+ y + z = 1)