K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

ta có n^4+2n^3+2n^2+2n+1=(n^2+n+1)^2-n^2=(n^2+1)(n+1)^2=t^2khi và chỉ khi n^2+1 là số chính phương

có n^2+1=a^2khi và chỉ khi n=0

AH
Akai Haruma
Giáo viên
25 tháng 12 2018

Lời giải:

$2N-1$=2.1.3.5...2007-1=2.1.3.5...2007-3+2$ chia $3$ dư $2$. Mà một số chính phương khi chia $3$ chỉ dư $0$ hoặc $1$ nên $2N-1$ không thể là số chính phương.

-------------------------

Ta thấy $N$ là số lẻ nên \(2N\) là số chia hết cho $2$ nhưng không chia hết cho $4$. Do đó $2N$ không thể là số chính phương.

-------------

Ở trên ta đã cm $2N$ chia hết cho $2$ nhưng không chia hết cho $4$. Do đó $2N$ có dạng $4k+2$, kéo theo $2N+1$ có dạng $4k+3$.

Một số chính phương khi chia $4$ chỉ có dư $0$ hoặc $1$ chứ không thể là $3$. Do đó $2N+1$ cũng không phải là số chính phương.

Ta có đpcm.

22 tháng 10 2017

đề có gì sai không bạn.  Nếu n = 4 thì n - n + 2n + 2n = 16 vẫn là số chính phương mà

Bạn xem lại đề đi nhé

3 tháng 8 2023

\(=n^2\left(n^4-n^2+2n+2\right)=\)

\(=n^2\left[n^2\left(n^2-1\right)+2\left(n+1\right)\right]=\)

\(=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]=\)

\(=n^2\left[\left(n+1\right)\left(n^3-n^2+2\right)\right]=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\right\}=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)

\(=n^2\left(n+1\right)^2\left(n^2-n+1\right)-n^2\left(n+1\right)^2\left(n-1\right)=\)

\(=n^2\left(n+1\right)^2\left[\left(n^2-n+1\right)-\left(n-1\right)\right]=\)

\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) Giả sử đây là số chính phương

\(\Rightarrow n^2-2n+2\) Phải là số chính phương

Ta có

\(n^2-2n+2=\left(n-1\right)^2+1\Rightarrow n^2-2n+2>\left(n-1\right)^2\) (1)

Ta có

\(n^2-2n+2=n^2-2\left(n-1\right)\) Với n>1

\(\Rightarrow n^2-2n+2< n^2\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)

Mà \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp nên \(n^2-2n+2\) không phải là số chính phương

=> Biểu thức đề bài đã cho không phải là số chính phương

 

 

Ta có :

2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1

=> 2n chia hết cho 8 => n chia hết cho 4

=> n+2019 chia ch 4 dư 3

mà số chính phương chia cho 4 dư 0,1

=> không tồn tại n

28 tháng 2 2020

2n + 2017 là số chính phương lẻ

=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)

=> 2n chia hết cho 8 => n chia hết cho 4

=> n + 2019 chia 4 dư 3

Mà scp chia 4 dư 0 hoặc 1

=> n + 2019 ko là scp

Vậy ko tồn tại STN n thoả mãn