Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Phương trình hoành độ giao điểm của đồ thị (C) với đường thẳng đã cho là
x − 1 1 − 2 x = x + m ⇔ x − 1 = 1 − 2 x x + m
(do x = 1 2 không là nghiệm)
⇔ 2 x 2 + 2 m x − m − 1 = 0 (*).
Đồ thị (C) với đường thẳng đã cho cắt nhau tại hai điểm phân biệt khi và chỉ khi (*) có hai nghiệm phân biệt ⇔ m 2 + 2 m + 2 > 0 (nghiệm đúng với mọi m).
Giả sử E x 1 ; y 1 , F x 2 ; y 2 thì x 1 , x 2 là hai nghiệm của (*).
Suy ra x 1 + x 2 = − m ; x 1 x 2 = − m + 1 2 .
Do đó 2 x 1 − 1 2 x 2 − 1 = 4 x 1 x 2 − 2 x 1 + x 2 + 1 = − 1 .
Ta có
k 1 = − 1 2 x 1 − 2 2 ; k 2 = − 1 2 x 2 − 1 2
nên k 1 k 2 = 1 .
Suy ra S ≥ 2 k 1 2 k 2 2 − 3 k 1 k 2 = − 1 . Dấu bằng xảy ra khi k 1 = − 1 k 2 = − 1 ⇒ x 1 = 0 x 2 = 1 hoặc x 1 = 1 x 2 = 0 ⇒ m = − 1 . Vậy S đạt giá trị nhỏ nhất bằng ‒1.
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
HD: Hoành độ giao điểm của (C) và d là nghiệm phương trình:
Chọn
Đáp án D
Cách giải: TXĐ: D = R
Gọi là 2 tiếp điểm
Tiếp tuyến tại M, N của (C) có hệ số góc đều bằng
Theo đề bài, ta có: OB = 2018OA => Phương trình đường thẳng MN có hệ số góc bằng 2018 hoặc – 2018.
TH1: Phương trình đường thẳng MN có hệ số góc là
là nghiệm của phương trình
TH2: MN có hệ số góc là 2018. Dễ đang kiểm rằng : Không có giá trị của thỏa mãn.
Vậy k = 6042
Đáp án A.