K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
$a+b+c=abc$

$\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:

$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.

Ta có đpcm.

6 tháng 2 2016

 

 

 

$a=b=\sqrt{2}$a)a,b có thể là số vô tỉ . VD;a=b=2 là vô tỉ mà ab và a/b đều hữu tỉ.

b) Trong trường hợp này $a,b$a,b không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết  $a=bt$a=bt,  với $t$t là số hữu tỉ khác $-1$1. Khi đó $a+b=b\left(1+t\right)=s$a+b=b(1+t)=s là số hữu tỉ, suy ra $b=\frac{s}{1+t}$b=s1+t  là số hữu tỉ. Vì vậy $a=bt$a=bt  cũng hữu tỉ.

c) Trong trường hợp này $a,b$a,b  có thể là số vô tỉ. Ví dụ ta lấy 

$a=1-\sqrt{3},b=3+\sqrt{3}\to a,b$a=13,b=3+3a,b vô tỉ nhưng $a+b=4$a+b=4  là số hữu tỉ và $a^2b^2=\left(ab\right)^2=12$$a^2b^2=\left(ab\right)^2=12$

a2b2=(ab)2=12 cũng là số hữu tỉ 

 

6 tháng 2 2016

ủa ! 

tui làm đầy đủ mà sao nó chỗ hiện chỗ ko vậy 

???????????????????????

17 tháng 7 2020

Trả lời:

a) a và b có thể là các số vô tỉ

b) a và b không thể là các số vô tỉ

c) a và b không thể là các số vô tỉ

Đây là e nghĩ vậy chớ ko bt đúng sai ra sao đâu ạ!

19 tháng 7 2020

Gợi ý bài làm này! 

+)  Xét các số có thể là số vô tỉ thì đưa ra ví dụ cụ thể

+) Xét các số  là không là số vô tỉ thì chứng minh

a) a; b có thể  là số vô tỉ 

Chứng minh: Lấy VD:  a = \(\sqrt{2}\); b= \(\sqrt{3}\) là 2 số vô tỉ

\(\sqrt{2}.\sqrt{3}=\sqrt{6};\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)thỏa mãn  2 số vô tỉ 

b) a; b không thể là số vô tỉ 

Chứng minh: 

\(\frac{a}{b}\)là số hữu tỉ => tồn tại số hữu tỉ m để: \(\frac{a}{b}=m\)<=> a = mb

khi đó: \(a+b=mb+b=\left(m+1\right)b\) là số hữu tỉ 

mà m là số hữu tỉ => m + 1 là số hữu tỉ  => b là số hữu tỉ 

=> a là số hữu tỉ 

c) a ; b không thể là số vô tỉ 

Chứng minh: 

\(a^2;b^2\)là số hữu tỉ 

=> \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)là số hữu tỉ  mà a + b là số hữu tỉ => a - b là số hữu tỉ 

Đặt: a + b = m; a - b = n => m; n là 2 số hữu tỉ 

=> \(a=\frac{m+n}{2};b=\frac{m-n}{2}\) là 2 số hữu tỉ

18 tháng 12 2020

Đặt \(\left\{{}\begin{matrix}\dfrac{a}{b^2}=x\\\dfrac{b}{c^2}=y\\\dfrac{c}{a^2}=z\end{matrix}\right.\Rightarrow xyz=1;x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

Ta có \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+zx\)

\(\Leftrightarrow xyz-1+x+y+z-xy-yz-zx=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b^2}=1\\\dfrac{b}{c^2}=1\\\dfrac{c}{a^2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b^2\\b=c^2\\c=a^2\end{matrix}\right.\left(đpcm\right)\)