Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(ab+bc+ac=2014\) nên từ giả thiết tương đương :
\(\frac{a^2+ab+bc+ac}{a+b}+\frac{b^2+ab+bc+ca}{b+c}+\frac{c^2+ab+bc+ca}{c+a}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b\right)}+\frac{\left(b+c\right)\left(b+a\right)}{a+b}+\frac{\left(c+a\right)\left(c+b\right)}{c+a}\)
\(=a+c+b+a+c+b=2\left(a+b+c\right)\) (đpcm )
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2+2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2 +\left(c-a\right)^2=0\)
do...
=> a=b=c
=> A = 0
\(ab=cd\Rightarrow\frac{a}{c}=\frac{d}{b}\)
Đặt \(\frac{a}{c}=\frac{d}{b}=k\Rightarrow\hept{\begin{cases}a=ck\\d=bk\end{cases}}\)
Khi đó : a2014 + b2014 + c2014 + d2014
= (ck)2014 + b2014 + c2014 + (bk)2014
= c2014(k2014 + 1) + b2014(k2014 + 1)
= (k2014 + 1)(c2014 + b2014) \(⋮\)(c2014 + b2014)
=> a2014 + b2014 + c2014 + d2014 là hợp số
trình bày theo cách khác
gọi ƯCLN (a,c)=m \(\Rightarrow\hept{\begin{cases}a=ma_1\\c=mc_1\end{cases}\left(a_1;c_1\inℤ\right),\left(a_1,c_1\right)=1}\)
vì a,b,c,d là số nguyên thỏa mãn ab=cd
\(\Rightarrow ma_1b=mc_1d\Leftrightarrow a_1b=c_1d\)nên \(a_1b⋮c_1\)
mà (a1;c1)=1 nên b chia hết cho c1 => b=nc1 => d=na1, do đó
\(a^{2014}+b^{2014}+c^{2014}+d^{2014}=\left(ma_1\right)^{2014}+\left(nc_1\right)^{2014}+\left(mc_1\right)^{2014}+\left(na_1\right)^{2014}\)
\(=a_1^{2014}\left(m^{2014}+n^{2014}\right)+c_1^{2014}\left(m^{2014}+n^{2014}\right)\)
\(=\left(m^{2014}+n^{2014}\right)\left(a_1^{2014}+c_1^{2014}\right)\)là hợp số
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Mà \(a^2;b^2;c^2\ge0\forall a;b;c\) nên điều này xảy ra \(\Leftrightarrow a=b=c=0\)
\(\Rightarrow M=2018^{2014}+2018^{2014}-2018^{2014}=2018^{2014}\)
\(=\frac{2013ac}{abc+2013ac+2013c}+\frac{abc}{abc^2+abc+2013ac}+\frac{2013c}{2013ac+2013c+2013}\)
\(=\frac{2013ac}{2013+2013ac+2013c}+\frac{2013}{2013c+2013+2013ac}+\frac{2013c}{2013ac+2013c+2013}\)
\(=\frac{2013ac+2013c+2013}{2013ac+2013c+2013}=1\left(đpcm\right)\)
vai trò a,b,c hoán vị vòng quanh. không mất tính tổng quát. giả sử a là số lớn nhất.
\(a\ge b>0.\)
nên b \(\ge\)a
ta có \(a\ge b\ge a\)
vậy a=b
tuong tự ta có a=c
vậy a=b=c=1
do đó M=a3+b2+c190=3
\(\frac{2014a}{ab+2014a+2014}+\frac{b}{bc+b+2014}+\frac{c}{ac+c+1}=\frac{2014ac}{abc+2014ac+2014c}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{2014ac}{2014+2014ac+2014c}+\frac{b}{b.\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{2014ac}{2014.\left(ac+c+1\right)}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
=>Điều phải chứng minh
\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)