Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$A=2+2^2+2^3+2^4+...+2^{10}$
$=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+2^9+2^{10}$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+2^9(1+2)$
$=15(2+2^5)+3.2^9$
Ta thấy $15(2+2^5)\vdots 5$ còn $3.2^9\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Bài 2:
$B=2+2^2+2^3+2^4+...+2^{99}+2^{100}$
$=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^{99}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{99})$
$=3(2+2^3+2^5+...+2^{99})\vdots 3$
3.
\(C=5+5^2+...+5^6\\ C=5\left(1+5\right)+5^3\left(1+5\right)+5^5\left(1+5\right)\\ C=5\cdot6+5^3\cdot6+5^5\cdot6\\ C=6\left(5+5^3+5^5\right)\\ =>C⋮6\)
\(4.D=3+3^2+...+3^6\\D=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)\\ D=3\cdot4+3^3\cdot4+3^5\cdot5\\ C=4\left(3+3^3+3^5\right)\\ =>D⋮4\\ 5.E=4+4^2+...+4^6\\ E=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)\\ E=4\cdot5+4^3\cdot5+4^5\cdot5\\ E=5\left(4+4^3+4^5\right)=>E⋮5 \)
Vì `|x+2|+|x+2/5|+|x+1/2|>=0`
`=>4x>=0`
`=>x>=0`
`=>|x+2|=x+2,|x+2/5|=x+2/5,|x+1/2|=x+1/2`
`=>x+2+x+2/5+x+1/2=4x`
`=>3x+5/2+2/5=4x`
`=>4x-3x=5/2+2/5=29/10`
`=>x=29/10(tmđk)`
Vậy `x=29/10`
Giải:
Vì \(\left|x+2\right|+\left|x+\dfrac{2}{5}\right|+\left|x+\dfrac{1}{2}\right|\ge0\) nên ta có:
\(\left|x+2\right|+\left|x+\dfrac{2}{5}\right|+\left|x+\dfrac{1}{2}\right|=4x\)
\(\left(x+2\right)+\left(x+\dfrac{2}{5}\right)+\left(x+\dfrac{1}{2}\right)=4x\)
\(x+2+x+\dfrac{2}{5}+x+\dfrac{1}{2}=4x\)
\(\left(x+x+x\right)+\left(2+\dfrac{2}{5}+\dfrac{1}{2}\right)=4x\)
\(3x+\dfrac{29}{10}=4x\)
\(3x-4x=-\dfrac{29}{10}\)
\(-1x=-\dfrac{29}{10}\)
\(x=-\dfrac{29}{10}:-1\)
\(x=\dfrac{29}{10}\)
pạn nào giải giúp mình bài này trước 16h đc ko ( mình năn nỉ đó )
\(\left(2x-1\right)^5+243=0\)
=>\(\left(2x-1\right)^5=-243\)
=>\(\left(2x-1\right)^5=\left(-3\right)^5\)
=>2x-1=-3
=>2x=-2
=>\(x=-\dfrac{2}{2}=-1\)
\(4x^3=4x\)
=>\(x^3=x\)
=>\(x^3-x=0\)
=>\(x\cdot\left(x^2-1\right)=0\)
=>\(x\left(x-1\right)\left(x+1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\\x=-1\end{matrix}\right.\)
4x³ = 4x
4x³ - 4x = 0
4x(x² - 1) = 0
4x = 0 hoặc x² - 1 = 0
*) 4x = 0
x = 0
*) x² - 1 = 0
x² = 1
x = 1 hoặc x = -1
Vậy x = -1; x = 0; x = 1