Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + xy + x + y = 2
x . x + x . y + x + y = 2
x . ( x + y ) + x + y = 2
x . ( x + y ) + ( x + y ) . 1 = 2
( x + y ) . ( x + 1 ) = 2
=> x + 1 thuoc U(2)
=> x + 1 thuoc { 1 ; 2 }
Lap bang :
x + 1 | 1 | 2 |
x + y | 2 | 1 |
x | 0 | 1 |
y | 2 | 1 |
Vay ( x ; y ) la : ( 0 ; 2 ) ; ( 1 ; 1 )
P/s tham khao nha
kí hiệu /:phần,kí hiệu'."nhân
a)5/4-5/8+-2/3=30/24+15/24+(-16/24)=29/24
b)7/19.8/11+7/19.3/11+12/19
=7/19.(8/11+3/11)+12/19
=7/19.11/11+12/19
=7/19.1+12/19
=7/19+2/19=9/19
chúc học tốt!
\(7x-3xy+3y=19\)
\(\Rightarrow\left(7x-7\right)-\left(3xy-3y\right)=19-7\)
\(7\left(x-1\right)-3y\left(x-1\right)=12\)
\(\left(7-3y\right)\left(x-1\right)=12\)
\(\Rightarrow7-3y;x-1\in\text{Ư}\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Bạn tự lập bảng rồi làm nốt nhé !
Bài 9:
Ta có: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{-t}{-9}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{-z}{17}=\dfrac{t}{9}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\\\dfrac{-y}{3}=-2\\\dfrac{-z}{17}=-2\\\dfrac{t}{9}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\-y=-6\\-z=-34\\t=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=6\\z=34\\t=-18\end{matrix}\right.\)
Vậy: (x,y,z,t)=(-10;6;34;-18)
Bài 11:
Ta có: \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}\)
\(\Leftrightarrow\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}=\dfrac{-7}{6}\)
Ta có: \(\dfrac{x}{18}=\dfrac{-7}{6}\)
\(\Leftrightarrow x=\dfrac{18\cdot\left(-7\right)}{6}=-21\)
Ta có: \(\dfrac{-98}{y}=\dfrac{-7}{6}\)
\(\Leftrightarrow y=\dfrac{-98\cdot6}{-7}=84\)
Ta có: \(\dfrac{-14}{z}=\dfrac{-7}{6}\)
\(\Leftrightarrow z=\dfrac{-14\cdot6}{-7}=12\)
Ta có: \(\dfrac{u}{-78}=\dfrac{-7}{6}\)
\(\Leftrightarrow u=\dfrac{-78\cdot\left(-7\right)}{6}=\dfrac{78\cdot7}{6}=91\)
Ta có: \(\dfrac{t}{102}=\dfrac{-7}{6}\)
\(\Leftrightarrow t=\dfrac{-7\cdot102}{6}=-7\cdot17=-119\)
Vậy: (x,y,z,t,u)=(-21;84;12;-119;91)
(2.x-4). (x-1)=0
Số nào nhân với 0 cx bằng 0
TH1: 2.x-4=0. TH2: x-1=0
2x=0+4. x=0+1
2x=4. x=1
x=4÷2
x=2
\(\left(2x-4\right)\cdot\left(x-1\right)=0\Rightarrow\left(2x^2-6x+4\right)=0\Leftrightarrow\left(2x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
ủng hộ mik nha
\(2xy+x+2y=13\\ \Rightarrow2xy+x+2y+1-1=13\\ \Rightarrow\left(2xy+2y\right)+\left(x+1\right)=13+1\\ \Rightarrow2y\left(x+1\right)+\left(x+1\right)=14\\ \Rightarrow\left(x+1\right)\left(2y+1\right)=14\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(14\right)\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(x+1\) | \(-14\) | \(-7\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(7\) | \(14\) |
\(2y+1\) | \(-1\) | \(-2\) | \(-7\) | \(-14\) | \(14\) | \(7\) | \(2\) | \(1\) |
\(x\) | \(-15\) | \(-8\) | \(-3\) | \(-2\) | \(0\) | \(1\) | \(6\) | \(13\) |
\(y\) | \(-1\) | \(-\dfrac{3}{2}\) | \(-4\) | \(-\dfrac{15}{2}\) | \(\dfrac{13}{2}\) | \(3\) | \(\dfrac{1}{2}\) | \(0\) |
Vì \(x,y\in N\Rightarrow\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
Vậy \(\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
a) x.y=11=> x=1 và y=11 hoặc x=11 và y=1 (vì 11 là số nguyên tố)
b) đề bài thiếu nhé bạn
a, y = (x+y+z+t)-(x+z+t) = 1-2 = -1
z = (x+y+z+t)-(x+y+t) = 1-3 = -2
t = (x+y+z+t)-(x+y+z) = 1-4 = -3
x = x+y+z+t-y-z-t = 1+1+2+3 = 7
b, => x+y+y+z+x+z = 11+3+2
=> 2.(x+y+z) = 16
=> x+y+z = 16 : 2 = 8
x = x+y+z-(y+z) = 8-3 = 5
y = x+y-x = 11 - 5 = 6
z = x+z - z = 2 - 5 = -3
Tk mk nha