Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/2=y/3=z/5=k
Suy ra:x=2k;y=3k;z=5k (1)
có xyz=810.thay (1) vào biểu thức ta có
2k*3k*5k=810
k^3*(2*3*5)=810
k^3*30=810
k^3=27
Suy ra : k=3
x/2=3 thì x=6
y/3=3 thì y=9
z/5=3 thì z=15
CHÚC BẠN HỌC TỐT
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z}{6}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2+y^2+z}{4+16+6}=\frac{14}{26}=\frac{7}{13}\)
\(\hept{\begin{cases}\frac{x^2}{4}=\frac{7}{13}\Rightarrow x=\sqrt{\frac{28}{13}}\\\frac{y^2}{16}=\frac{7}{13}\Rightarrow y=\sqrt{\frac{112}{13}}\\\frac{z}{6}=\frac{7}{13}\Rightarrow z=\frac{42}{13}\end{cases}}\)
Vậy ....
Ta có: \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) => \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\) => \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng t/c chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}}\) => \(\hept{\begin{cases}x^2=1\\y^2=4\\z^3=9\end{cases}}\) => \(\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}\)
Vậy ...
Ta có : \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=>\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=>\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Ấp dụng tc dãy tỉ số bằng nhau ta có : \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(=>\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}=>\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}=>\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}}}\)
Vậy \(x=\pm1;y=\pm2;z=\pm3\)
a) \(\frac{x}{y}=\frac{7}{3}\)\(\Rightarrow\frac{x}{7}=\frac{y}{3}\)\(\Rightarrow\frac{5x}{35}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\Rightarrow x=21;y=9\)
b) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
\(\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\); \(y^2=4\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\); \(z^2=9\Rightarrow\orbr{\begin{cases}z=3\\z=-3\end{cases}}\)
Vậy ...
a)\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}\)
\(\Rightarrow\frac{5x-2y}{35-6}=\frac{87}{21}=\frac{29}{7}\)
\(\Rightarrow\frac{5x}{35}=\frac{29}{7}\Rightarrow5x=145\Rightarrow x=29\)
\(\Rightarrow\frac{2y}{6}=\frac{29}{7}\Rightarrow2x=\frac{174}{7}\Rightarrow x=\frac{348}{7}\)
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)=>\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\)=>\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=>\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)=>\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Aps dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)(vì x2+y2+z2=14)
=>\(\frac{x^2}{4}=\frac{1}{4}=>x^2=1=>x=1;x=-1\)
=>\(\frac{y^2}{16}=\frac{1}{4}=>y^2=4=>y=2;y=-2\)
=>\(\frac{z^2}{36}=\frac{1}{4}=>z^2=9=>z=3;z=-3\)
Vậy x=1; y=2 ; z=3
Hoặc x=-1 ;y=-2 ;z=-3
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}\)\(=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x=\frac{1}{4}.4=1\)
\(y=\frac{1}{4}.16=4\)
\(z=\frac{1}{4}.36=9\)
Vậy: x=1, y=4, z=9
CHÚC BẠN HỌC TỐT VÀ VUI VẺ NHÉ!!!