Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{2016\cdot2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
= 1/1-1/2+1/2-1/3+1/3-............-1/2017
=1-1/2017
=2016/2017
Nick này là của tôi đó
Ai nhanh mk k cho
3 k nhé bn
Nhanh lên các bn ới
Ai trả lopiwf đc tôi cho luôn nick này
Nhanh lên
Coi như là mừng tuổi
ok nhé
A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
1/2^2 < 1/1*2
1/3^2 < 1/2*3
1/4^2 < 1/3*4
...
1/100^2 < 1/99*100
=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100
=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
=> A < 1 - 1/100
=> A < 1
minh deo can ban k dau :((
\(a,\frac{1}{2}x+\frac{3}{5}(x-2)=3\)
\(\Rightarrow\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)
\(\Rightarrow\left[\frac{1}{2}+\frac{3}{5}\right]x=3+\frac{6}{5}\)
\(\Rightarrow\left[\frac{5}{10}+\frac{6}{10}\right]x=\frac{21}{5}\)
\(\Rightarrow\frac{11}{10}x=\frac{21}{5}\)
\(\Rightarrow x=\frac{21}{5}:\frac{11}{10}=\frac{21}{5}\cdot\frac{10}{11}=\frac{21}{1}\cdot\frac{2}{11}=\frac{42}{11}\)
Vậy x = 42/11
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :
\(\Rightarrow\) \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)
Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2009}\right)\)
=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2008}{2009}\)
=\(\frac{1}{2009}\)
cho 3 k
\(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{10^2}\right)\)
=> \(\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)\)\(...\left(1-\frac{1}{10}\right)\cdot\left(1+\frac{1}{10}\right)\)
=> \(\left(1-\frac{1}{2}\right)\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\cdot\cdot\frac{9}{10}\cdot\frac{10}{11}\)
=> \(\frac{1}{2}\cdot\frac{3\cdot2\cdot4\cdot\cdot\cdot9\cdot10}{2\cdot3\cdot3\cdot\cdot\cdot10\cdot11}=\frac{1}{2}\cdot\frac{11}{10}=\frac{11}{20}\)
Chúc bn học tốt !
cho mk 3 k nha bn
thanks nhìu
bài này mk ko copy, ko chép mạng, tự nghĩ mất 6 phút .
có công thức rùi nha !
chúc bn học tốt
(1-1/2)(1-1/3)(1-1/4)...(1-1/2009)
=1/2*2/3*3/4*...*2008/2009
=\(\frac{1\cdot2\cdot3\cdot...\cdot2008}{2\cdot3\cdot4\cdot...\cdot2009}\)
=1/2009
A = 1/ 12 +1/22+1/32+. . . +1/502 < 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50
<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50
<=> A< 1 + 1 - 1/50 = 2 - 1/50
Vậy A < 2
Nhớ k nhé bạn ^^
2/3.1/3+1/2
=1/2+1/2
=2/2
=1
=1/2+1/2=1