Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{-1}{6}+\frac{3}{4}\right)\)
\(\frac{4}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{7}{12}\)
\(\frac{-4}{9}\le x\le\frac{7}{18}\)
\(\frac{-8}{18}\le x\le\frac{7}{18}\)
\(\Rightarrow\)X \(\in\) {\(\frac{-7}{18};\frac{-6}{18};\frac{-5}{18};\frac{-4}{18};\frac{-3}{18};\frac{-2}{18};\frac{-1}{18};0;\frac{1}{18};\frac{2}{18};\frac{3}{18};\frac{4}{18};\frac{5}{18};\frac{6}{18}\)}
Ta có:
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\)\(\frac{1}{19}\)
\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{19}\right)\)
\(\Rightarrow B>\left(\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\right)+\left(\frac{1}{20}+...+\frac{1}{20}\right)\)
\(B>\frac{4}{5}+\frac{1}{5}\)
\(B>1\)\(\left(đpcm\right)\)
\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)
\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)
\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow4x-32=-18x\)
\(\Rightarrow x=\frac{16}{11}\)
d) \(\frac{x}{-9}=\left(\frac{2}{6}\right)^2\)
\(\Rightarrow\frac{x}{-9}=\frac{2}{6}.\frac{2}{6}\)
\(\Rightarrow\frac{x}{-9}=\frac{4}{36}\)
\(\Rightarrow\frac{x}{-9}=\frac{1}{9}\)
\(\Rightarrow\frac{-x}{9}=\frac{1}{9}\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=1\)
e) \(\frac{a}{b}+\frac{3}{6}=0\)
\(\Rightarrow\frac{a}{b}=0-\frac{3}{6}\)
\(\Rightarrow\frac{a}{b}=0-\frac{1}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{-1}{2}\)
\(\Rightarrow a=-1;b=2\)
1,
ta có : \(\frac{\overline{abab}}{\overline{cdcd}}=\frac{\overline{abab}:101}{\overline{cdcd}:101}=\frac{\overline{ab}}{\overline{cd}}\) ; \(\frac{\overline{ababab}}{\overline{cdcdcd}}=\frac{\overline{ababab}:10101}{\overline{cdcdcd}:10101}=\frac{\overline{ab}}{\overline{cd}}\)
Vậy \(\frac{\overline{abab}}{\overline{cdcd}}=\frac{\overline{ababab}}{\overline{cdcdcd}}\)
2,
\(\frac{1}{2}.\frac{1}{b}=\frac{2}{4}\)
\(\Rightarrow\frac{1.1}{2.b}=\frac{2}{4}\)
\(\Rightarrow\frac{1}{2.b}=\frac{1}{2}\)
\(\Rightarrow2.b=2\)
\(\Rightarrow b=2:2=1\)
\(\frac{abab}{cdcd}=\frac{abab:101}{cdcd:101}=\frac{ab}{cd}\)
mà \(\frac{ababab}{cdcdcd}=\frac{ababab:10101}{cdcdcd:10101}=\frac{ab}{cd}\)
=> \(\frac{abab}{cdcd}=\frac{ababab}{cdcdcd}\)
vậy...
câu 2
\(\frac{1}{2}.\frac{1}{b}=\frac{2}{4}\\ \Rightarrow\frac{1}{b}=\frac{2}{4}:\frac{1}{2}=1\\ \Rightarrow b=1\)
vậy....
Ta có:\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(=\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)\(< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)\(=\frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
Vậy ............
Ta có: 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/3 + 3/31 + 3/47 < 1/3 + 3/30 + 3/45
= 1/3 + 1/10 + 1/15 = 1/3 + (1/30) * (3+2) = 1/3 + (1/0) * 5 = 1/3 + 1/6
= (1/6) * (2+1) = (1/6) * 3 = 1/2.
=> 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/2.
Ủng hộ mk nha mina^^
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
Gọi số cam của ba giỏ lần lượt là a, b, c (a, b, c là số tự nhiên nhỏ hơn 172)
Theo bài ra ta có : \(a+b+c=172\)
và \(\frac{2}{5}a+\frac{1}{4}b+\frac{5}{12}c=64\)
\(\Leftrightarrow\frac{24a+15b+25c}{60}=64\)
\(\Leftrightarrow15\left(a+b+c\right)+9a+10c=3840\)
\(\Leftrightarrow15.172+9a+10c=9840\)
\(\Leftrightarrow9a+10c=1260\)
Ta lại có \(\frac{1}{5}\)số cam của giỏ thứ 1 và \(\frac{2}{9}\)số cam của giỏ thứ 3 bằng:
\(\frac{a}{5}+\frac{2}{9}c=\frac{9a+10c}{45}=28\) (quả)
ĐS: 28 quả.
A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
1/2^2 < 1/1*2
1/3^2 < 1/2*3
1/4^2 < 1/3*4
...
1/100^2 < 1/99*100
=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100
=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
=> A < 1 - 1/100
=> A < 1
minh deo can ban k dau :((
\(a,\frac{1}{2}x+\frac{3}{5}(x-2)=3\)
\(\Rightarrow\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)
\(\Rightarrow\left[\frac{1}{2}+\frac{3}{5}\right]x=3+\frac{6}{5}\)
\(\Rightarrow\left[\frac{5}{10}+\frac{6}{10}\right]x=\frac{21}{5}\)
\(\Rightarrow\frac{11}{10}x=\frac{21}{5}\)
\(\Rightarrow x=\frac{21}{5}:\frac{11}{10}=\frac{21}{5}\cdot\frac{10}{11}=\frac{21}{1}\cdot\frac{2}{11}=\frac{42}{11}\)
Vậy x = 42/11