\(\frac{3}{10}\)*(\(2003^{2013}\)-\(1997...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 10 2019

\(2003^{2013}\equiv3^{2013}\left(mod10\right)\)

\(3^{2013}=\left(3^4\right)^{503}.3\equiv3\left(mod10\right)\)

\(\Rightarrow2003^{2013}\equiv3\left(mod10\right)\)

\(1997^{1997}=\left(1997^4\right)^{499}.1997\equiv7\left(mod10\right)\)

Số trên không phải là số tự nhiên

Nó chỉ là số tự nhiên khi phép tính trong ngoặc là dấu "+"

18 tháng 6 2016

Câu 2 :

b) \(\frac{x}{3}=\frac{-2}{9}\)

=> x = \(\frac{-2}{9}.3\) = \(\frac{-2}{3}\)

c) \(0,5x-\frac{2}{3}x=\frac{7}{12}\)

=> \(\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)

=> \(-\frac{1}{6}\)x = \(\frac{7}{12}\)

=> x = \(\frac{7}{12}:\frac{-1}{6}\)

=> x =\(\frac{-7}{2}\)

18 tháng 6 2016

Đề 1 câu 5 :

\(3B=3^2+3^3+3^4+...+3^{201}\)

\(\Rightarrow2B=3B-B=3^{201}-3\)

\(\Rightarrow2B+3=\left(3^{201}-3\right)+3=3^{201}\)

Do đó n = 201

14 tháng 10 2018

\(\left(7^{1997}-7^{1995}\right):\left(7.7^{1994}\right)\\ =\left(7^{1997}-7^{1995}\right):\left(7^{1+1994}\right)\\ =\left(7^{1997}-7^{1995}\right):7^{1995}\\ =\left(7^{1997}:7^{1995}\right)-\left(7^{1995}:7^{1995}\right)\\ =\left(7^{1997-1995}\right)-1\\ =7^2-1\\ =48\)

15 tháng 3 2020

Đề bài sai rồi bạn, đáng lẽ đề bài phải như thế này:

Chứng minh rằng với mọi \(x\in[-\frac{3}{4};+\infty)\) thì \(\frac{x}{x^2+1}\le\frac{18}{25}x+\frac{3}{50}\)

Ta sẽ phân tích bất phương trình kia

\(\Leftrightarrow0,72x+0,06\ge\frac{x}{x^2+1}\)

\(\Leftrightarrow0,72x^3+0,06x^2-0,28x+0,06\ge0\)

\(\Leftrightarrow0,72\left(x+\frac{3}{4}\right)\left(x-\frac{1}{3}\right)^2\ge0\Leftrightarrow x\ge-\frac{3}{4}\)

9 tháng 12 2015

Áp dụng bdt cosi:

\(\frac{a^4}{b}+\frac{b^4}{c}+\frac{c^4}{a}\ge3\sqrt[3]{\frac{a^4}{b}.\frac{b^4}{c}.\frac{c^4}{a}}=3abc\)

a: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)

b: Vì a,b là các số trái dấu nên a/b<0 và b/a<0

\(\dfrac{a}{b}+\dfrac{b}{a}=-\left(-\dfrac{a}{b}-\dfrac{b}{a}\right)\le-2\cdot\sqrt{\dfrac{-a}{b}\cdot\dfrac{-b}{a}}=-2\)

NV
20 tháng 4 2019

\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)

\(A=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{4}+x\right)=0\)

NV
23 tháng 2 2020

\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\)

b/

\(2\left(\overrightarrow{JA}+\overrightarrow{AB}+\overrightarrow{DA}+\overrightarrow{AI}\right)=2\left(\overrightarrow{JB}+\overrightarrow{DI}\right)=2\left(\overrightarrow{JD}+\overrightarrow{DB}+\overrightarrow{DB}+\overrightarrow{BI}\right)\)

\(=2\left(2\overrightarrow{DB}+\overrightarrow{IC}+\overrightarrow{CJ}\right)=2\left(2\overrightarrow{DB}+\overrightarrow{IJ}\right)=2\left(2\overrightarrow{DB}+\frac{1}{2}\overrightarrow{BD}\right)=3\overrightarrow{DB}\)c/

\(\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{BK}=\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{6}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\)

\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}+\frac{1}{5}\overrightarrow{BC}=\frac{6}{5}\left(\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\right)=\frac{6}{5}\overrightarrow{AK}\)

\(\Rightarrow A;K;H\) thẳng hàng

29 tháng 5 2020

Mk cx chả biết cõ lỗi ko nữa nhưng thầy đọc thế nào chép thế ,nó là toán lớp 8 nhưng mà tra trên mangj nó toàn áp dụng mấy công thức lớp 10