Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{x^2+2x-3}=1\)
\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1\right)^2-4}=1\)
\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1+2\right)\left(x+1-2\right)}=1\)
\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+3\right)\left(x-1\right)}=1\)
ĐKXĐ: x \(\ne\) 1 và x \(\ne\) - 3
\(\left(3x-1\right)\left(x+3\right)-\left(2x-5\right)\left(x-1\right)+4=\left(x+3\right)\left(x-1\right)\)
3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 = x2 - x + 3x - 3
3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 - x2 + x - 3x + 3 = 0
13x - 1 = 0
x = \(\frac{1}{13}\)
Thực hiện các phép đổi tương đương , ta đưa ( 1 ) về dạng :
\(\frac{x+4}{2x^2-5x+2}-\frac{x+4}{2x^2-7x+3}=0\)
\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{2x^2-5x+2}-\frac{1}{2x^2-7x+3}\right)=0\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(1-2x\right)}{\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)}=0\)
\(\Leftrightarrow\left(x+4\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=\frac{1}{2}\end{array}\right.\)
Thữ vào mẫu thức : Với \(x=\frac{1}{2}\) thì \(2x^2-5x+2=0\)
Với \(x=-4\) thì \(\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)\ne0\)
Vậy phương trình ( 1 ) là cho nghiệm duy nhất là \(x=-4\)
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
\(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}ĐKXĐ:x\ne-1;-3\)
\(\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x+1\right)\left(x-1\right)\)
\(4x^2+12x+18=-2x-5x^2+5\)
\(4x^2+12x+18+2x+5x^2-5=0\)
\(9x^2-14x+13=0\)
=> vô nghiệm