Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -90/189 + 45/84 - 78/126
= -10/21 + 15/28 - 13/21
= (-10/21 - 13/21) + 15/28
= -24/21 + 15/28
= -17/28
\(A=\frac{-5}{12}+\frac{4}{37}+\frac{17}{12}-\frac{41}{37}=(\frac{-5}{12}+\frac{17}{12})+(\frac{4}{37}-\frac{41}{37})=\frac{12}{12}+\frac{-37}{37}=1+(-1)=0\)
\(B=\frac{1}{2}-\frac{43}{101}+\frac{-1}{3}-\frac{1}{6}=\frac{-43}{101}+(\frac{1}{2}+\frac{-1}{3}-\frac{1}{6})=\frac{-43}{101}+(\frac{3}{6}+\frac{-2}{6}-\frac{1}{6})=\frac{-43}{101}+0=\frac{-43}{101}\)
\(A=\frac{-5}{12}+\frac{4}{37}+\frac{17}{12}-\frac{41}{37}.\)
\(A=\left(\frac{-5}{12}+\frac{17}{12}\right)-\left(\frac{41}{37}-\frac{4}{37}\right)\)
\(A=1-1=0\)
\(B=\frac{1}{2}-\frac{43}{101}+\left(\frac{-1}{3}\right)-\frac{1}{6}\)
\(B=\left(\frac{1}{2}+\left(\frac{-1}{3}\right)-\frac{1}{6}\right)-\frac{43}{101}\)
\(A=0-\frac{43}{101}=\frac{-43}{101}\)
\(C=\frac{-5}{6}\cdot\frac{12}{-7}\cdot-\frac{21}{15}\)
\(C=\frac{-5}{2.3}\cdot\frac{3.2.2}{-7}\cdot\frac{3.\left(-7\right)}{3.5}\)
\(C=\frac{-2}{1}=-2\)
29-x/21 + 27-x/23 + 25-x/25 + 23-x/27 + 21-x/29 = -5
1 + 29-x/21 + 1 + 27-x/23 + 1 + 25-x/25 + 1 + 23-x/27 + 1 + 21-x/29 = 0
50-x/21 + 50-x/23 + 50-x/25 + 50-x/27 + 50-x/29 = 0
(50-x) (1/21 + 1/23 + 1/25 + 1/27 + 1/29) = 0
Vì: 1/21 + 1/23 + 1/25 + 1/27 + 1/2 > 0
=> 50 - x = 0
x = 50
Vậy x = 50
\(\frac{-1}{3}+\frac{0,2-0,3+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{12}}\)
\(=\frac{-1}{3}+\frac{\frac{2}{10}-\frac{3}{10}+\frac{5}{11}}{\frac{-3}{10}+\frac{9}{16}-\frac{15}{12}}\)
\(=\frac{-1}{3}+\frac{\frac{39}{110}}{\frac{-79}{80}}\)
\(=\frac{-1}{3}-\frac{312}{869}\)
\(=\frac{-1805}{2607}\)
=1/1.2+5/2.3+11/3.4+19/4.5+29/5.6+41/6.7
=1-1/2+5/2-5/3+11/3-11/4+19/4-19/5+29/5-29/6+41/6-41/7
=3+2+2+2+2-41/7
=77/7-41/7
=36/7
k nhé
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=6-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\right)\)
\(=6-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=6-\left(1-\frac{1}{7}\right)=6-\frac{6}{7}=\frac{36}{7}\)
\(\text{}\text{}\)\(=\frac{27}{43}.\frac{34}{58}-\frac{21}{41}.\frac{1}{2}+\frac{9}{58}:\frac{43}{37}-\frac{6}{29}:\frac{41}{21}\\ =\frac{27}{43}.\frac{34}{58}-\frac{21}{41}.\frac{1}{2}+\frac{9}{58}.\frac{37}{43}-\frac{6}{29}.\frac{21}{41}\)
\(\frac{6}{43}\)