Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
Mà: \(\frac{2011}{2012+2013}< \frac{2011}{2012};\frac{2012}{2012+2013}< \frac{2012}{2013}\)
\(\Rightarrow A=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< \frac{2011}{2012}+\frac{2012}{2013}=B\)
Hay: A < B
dễ quá bạn ơi
chỉ cần lấy 2011(A)>2011/2012+2012/2013
vậy A>B
ta có:Q=2010+2011+2012/2011+2012+2013=2010/2011+2012+2013+2011/2011+2012+2013+2012/2011+2012+2013
=> P>2010/2011+2012+2013
P>2011/2011+2012+2013
P>2012/2011+2012+2013
=>P>Q
đề bài phải là: 2010/2011+2011/2012+2012/2013+2013/2014
Theo dạng đề bài này thì Mai Xuân Nhật nói đúng rồi đấy: 4=1+1+1+1
mà 2010/2011<1, <1,<1,<1, 2013/2014<1 => 2010/2011+2011/2012 +2011/2012 + 2012/2013+2013/2014<4
đơn giản vậy thôi! Còn nếu đề bài bạn đúng thật thì mình, Mai Xuân Nhật, Lê Chí Cường đều làm sai cả đấy
\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}
Tách A ra thành 2 phân số cùng tử(dễ thôi).
So sánh mỗi phân số với 1 phân số tương ứng ở B.
=>A<B.
Vậy A<B.
\(\frac{2010}{2011}\)> \(\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}\)> \(\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}\)> \(\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)> \(\frac{2010+2011+2012}{2011+2012+2013}\)
=> P > Q
đặt \(A=\frac{2011+2012}{2012+2013};B=\frac{2011}{2012}+\frac{2012}{2013}\)
ta có:\(A=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(\frac{2011}{2012+2013}<\frac{2011}{2012};\frac{2012}{2012+2013}<\frac{2012}{2013}\)
=>A<B
\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
rồi bây giờ thấy ngay đáp án r tự làm đi