K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

\(\frac{1}{6}.\frac{1}{3}+\frac{17}{6}.\frac{1}{3}+\frac{2015}{2016}-1\)

\(=\frac{1}{3}\left(\frac{1}{6}+\frac{17}{6}\right)+\frac{2015}{2016}-1\)

\(=\frac{1}{3}.3+\frac{2015}{2016}-1\)

\(=1-1+\frac{2015}{2016}=\frac{2015}{2016}\)

\(\frac{1}{6}\times\frac{1}{3}+\frac{17}{6}\times\frac{1}{3}+\frac{2015}{2016}-1\)

\(=\left(\frac{1}{6}+\frac{17}{6}\right)\times\frac{1}{3}+\frac{2015}{2016}-1\)

\(=3\times\frac{1}{3}+\frac{2015}{2016}-1\)

\(=1+\frac{2015}{2016}-1\)

\(=0+\frac{2015}{2016}=\frac{2015}{2016}\)

21 tháng 3 2017

bằng 15 hay sao ý

6 tháng 8 2017

Sửa đề \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}\div2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4032}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\Leftrightarrow\frac{1}{x+1}=\frac{1}{4032}\)

\(\Leftrightarrow x+1=4032\Rightarrow x=4031\)

20 tháng 6 2019

#)Giải :

\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{2}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\times0\)

\(=0\)

20 tháng 6 2019

\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{2}{6}+\frac{3}{6}\right)\)

=\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).0\)

\(=0\)

3 tháng 7 2018

Câu b:

\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)

\(\frac{63}{20}+\frac{3}{5}\)

\(\frac{15}{4}\)

7 tháng 7 2018

\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)

\(\frac{25}{8}:\frac{5}{6}\)

\(\frac{25}{8}.\frac{6}{5}\)

\(\frac{30}{8}\)

3 tháng 10 2017

Xét tử: \(2015+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)

\(=\left(1+1+...+1\right)+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)( trong ngoặc có 2015 số 1 )

\(=\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)+1\)

\(=\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}+\frac{2016}{2016}\)

\(=2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\)

Ghép tử và mẫu  \(\frac{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}=2016\)

Vậy \(A=2016\)

3 tháng 10 2017

A = 2016

10 tháng 9 2017

\(1+\frac{1}{3}+\frac{1}{6}+..+\frac{2}{\left(x+1\right)\left(x+2\right)}=1\frac{2013}{2015}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+..+\frac{2}{\left(x+1\right)\left(x+2\right)}=\frac{4028}{2015}\)

\(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x+1}-\frac{1}{x+2}\right)=\frac{4028}{2015}\)

\(1-\frac{1}{x+2}=\frac{4028}{2015}:2\)

\(1-\frac{1}{x+2}=\frac{2014}{2015}\)

\(\frac{1}{x+2}=1-\frac{2014}{2015}\)

\(\frac{1}{x+2}=\frac{1}{2015}\)

\(\Rightarrow x+2=2015\)

\(\Rightarrow x=2013\)

23 tháng 7 2016

\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2015}\right)\times\left(1-\frac{1}{2016}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2014}{2015}\times\frac{2015}{2016}\)

\(=\frac{1}{2016}\)

23 tháng 7 2016

Giải : Ta có                (1-1/2)*(1-1/3)*(1-1/4)*....*(1-1/2015)*(1-1/2016)  

                                = 1* -(1/2+1/3+1/4+....+1/2015+1/2016)

                                = 1* - (1/2+1/2016 +1/3+1/2015 +...+1/1007)

                                = 1* -(1/2033134)

                                = -1/2033134