K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\left(1:a+2a+...+10a\right)=\frac{49}{100}\)

\(\Rightarrow1-10a=\frac{49}{100}\)

\(\Rightarrow10a=1-\frac{49}{100}\)

10a=0,51

a=\(\frac{0,51}{10}=0,051\)

29 tháng 3 2016

mk không biết có đúng không nữa thông cảm (mk chưa gặp dạng toán này ; chổ 1:... = 1 nha thay vào luôn) còn chổ ( a+2a+...10a là vd)

22 tháng 6 2017

a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)

\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\cdot\frac{8}{33}\)

\(=\frac{52}{33}\)

22 tháng 6 2017

a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99

A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)

A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)

A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)

A= 13/2 ( 1/3 - 1/11) 

A= 13/2 . 8/33

A= 52/33  

6 tháng 8 2018

So sánh à bạn?

6 tháng 8 2018

A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)

B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)

vậy A=B

\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)

\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)

\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)

\(\Leftrightarrow X=\frac{109}{6075}\)

Vậy X=109/6075

Chắc Sai kết quả chứ công thức đúng nha!!!...

Fighting!!!...

28 tháng 5 2019

Đặt: 

 \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)

=> \(A=\frac{12}{25}\)

Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

   \(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)

=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)

=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)

Giải phương trình:

\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)

                        \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)

                                                                            \(12x+\frac{12}{25}=11x+\frac{121}{243}\)

                                                                             \(12x-11x=\frac{121}{243}-\frac{12}{25}\)

                                                                                                  \(x=\frac{109}{6075}\)

24 tháng 6 2017

2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)

  \(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)

  \(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)

  \(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)

  \(=\frac{10}{2}.\frac{2575}{5151}\)

  \(=2,499514657\)

24 tháng 6 2017

= 2,499514657 bạn nhé

12 tháng 6 2018

\(a,\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}.\)

\(b,\left[x\cdot\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}:\frac{9}{4}\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}\cdot\frac{4}{9}\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{14}{9}\)

\(\Leftrightarrow x\cdot\frac{5}{3}-1=\frac{14}{9}\cdot9\)

\(\Leftrightarrow x\cdot\frac{5}{3}-1=14\)

\(\Leftrightarrow x\cdot\frac{5}{3}=14+1\)

\(\Leftrightarrow x\cdot\frac{5}{3}=15\)

\(\Leftrightarrow x=15:\frac{5}{3}\)

\(\Leftrightarrow x=15\cdot\frac{3}{5}\)

\(\Leftrightarrow x=9.\)

12 tháng 6 2018

a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\frac{1}{1}-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

b)\(\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)

\(\Leftrightarrow\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:\frac{9}{4}=1\frac{5}{9}\)

\(\Rightarrow x.\frac{5}{3}-1=1\frac{5}{9}.9=14\)

\(\Rightarrow x.\frac{5}{3}=14+1=15\)

\(\Rightarrow x=15:\frac{5}{3}=9\)

23 tháng 1 2016

Chỉ biết \(x\) = \(\frac{109}{6075}\) thôi

17 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}\)

\(=1-\frac{1}{6}\)

\(=\frac{5}{6}\)

♥ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣ ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿ ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿ 

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=\)

\(\frac{1}{1}-\frac{1}{6}=\frac{5}{6}\)