Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3^{-m}}{81}=27\)
\(\frac{3^{-m}}{3^4}=3^3\)
\(3^{-m}=3^3\times3^4\)
\(3^{-m}=3^7\)
\(-m=7\)
\(m=7\)
\(\frac{3^{-m}}{81}=27\)
\(\Rightarrow3^{-m}=27.81\)
\(\Rightarrow3^{-m}=2187\)
Vì nếu k-m thì =>k=\(\frac{1}{k^m}\)
Mà 2187 \(\in\)N
=>ko tìm đc
\(\Leftrightarrow3^{-m}=27.81=3^3.3^4=3^7\)
\(\Leftrightarrow-m=7\Rightarrow m=-7\)
Vậy \(m=-7\)
\(\frac{3^{-m}}{81}=27\)
\(\Leftrightarrow\left(3^{-m}\right)=27.81\)
\(\Leftrightarrow3^{-m}=3^7\)
\(\Leftrightarrow-m=-7\)
\(\Rightarrow m=7\)
Vậy m= 7
\(M=\frac{3^6.3^8.5^4-3^{15}.5^{13-9}}{3^{12}.5^6+3^{18}.5^9}.2.\frac{25}{9}=\frac{3^{14}.5^4\left(1-3\right).2.5^2}{3^{12}.5^6\left(1+3^6.5^3\right).3^2}=\frac{-4}{1+3^6.5^3}\)
1. \(\frac{x^7}{81}=27\Leftrightarrow x^7=2187\)
\(\Leftrightarrow x^7=3^7\Leftrightarrow x=3\)
2. \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\Leftrightarrow x^8=x^7\)
\(\Leftrightarrow x^8-x^7=0\Leftrightarrow x^7\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy,...
3.\(x^{10}=25x^8\Leftrightarrow x^{10}-25x^8=0\)
\(\Leftrightarrow x^8\left(x^2-25\right)=0\Leftrightarrow x^8\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^8=0\\x+5=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
4. \(\left(3x-1\right)^3=\frac{-8}{27}\Leftrightarrow\left(3x-1\right)^3=\left(\frac{-2}{3}\right)^3\)
\(\Leftrightarrow3x-1=\frac{-2}{3}\Leftrightarrow3x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{9}\)
3-m: 81= 27
=> 3-m= 33. 34
=> 3-m= 37
=> -m= 7
=> m= -7
Vậy m= -7
\(3^{-m}.81=27\)
\(\Rightarrow3^{-m}.3^4=3^3\)
\(\Rightarrow3^{-m}=3\)
\(\Rightarrow-m=1\)
\(\Rightarrow m=-1\)
\(\frac{3^{-m}}{81}=27\)
\(=>3^{-m}=27\cdot81\)
\(3^{-m}=2187\)
Vì nếu \(k^{-m}\) thì => k = \(\frac{1}{k^m}\)
mà 2187 \(\in N\)
=> Không tìm được m thỏa mãn yêu cầu đề bài.
\(\frac{3^{-m}}{81}=27\Rightarrow3^{-m}=27.81=2187=3^7\)
\(\Rightarrow-m=7\)
\(\Rightarrow m=-7\)