Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).\left(1-\frac{1}{25}\right)...\left(1-\frac{1}{100}\right)\)
\(F=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}...\frac{99}{100}\)
\(F=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}...\frac{9.11}{10.10}\)
\(F=\frac{1.2.3.4...9}{2.3.4...10}.\frac{3.4.5...11}{2.3.4.5...10}\)
\(F=\frac{1}{10}.\frac{11}{2}=\frac{11}{21}\)
\(F=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x\frac{24}{25}x...x\frac{99}{100}\)
\(F=\frac{1x3x2x4x3x5x4x6x...x9x11}{2x2x3x3x4x4x5x5x...x10x10}\)
\(F=\frac{1x2x3x3x4x4x5x5x...x9x9x10x11}{2x2x3x3x4x4x5x5x...x10x10}=\frac{11}{2x10}=\frac{11}{20}\)
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right).y=\frac{2}{3}\)
\(\Leftrightarrow2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(\Leftrightarrow2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\Leftrightarrow2.\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\Leftrightarrow\frac{20}{11}.y=\frac{2}{3}\)
\(\Leftrightarrow y=\frac{11}{30}\)
Vậy ...
mình xem được kết quả đúng là 22/15 cơ bạn mình chỉ muốn biết cách giải đẻ ra 22/15 thôi
\(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(N>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(N>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{10}{22}>\frac{9}{22}\)
Vậy N > 9/22
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}+\frac{1}{121}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}+\frac{1}{11^2}\)
Ta có: \(\frac{1}{2^2}>\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}>\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}>\frac{1}{4}-\frac{1}{5}\)
................................
\(\frac{1}{10^2}>\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{11^2}>\frac{1}{11}-\frac{1}{12}\)
Cộng theo vế ta được:
\(A>\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
Vậy \(A>\frac{5}{12}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 + 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 + 1/256 - 1/512
= 1 - 1/512
= 511/512
Đ/số : 609/625
609/ 625