Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Bạn tự vẽ hình nhé.
a) Xét tam giác AMB và tam giác DMC có: MB = MC (gt) ; góc AMB = góc DMC (2 góc đối đỉnh) ; AM = MD (gt)
=> tam giác AMB = tam giác DMC (c.g.c) (đpcm)
b) Vì AH vuông góc BC tại H (gt) (*) nên góc AHM = góc EHM = 90o (định nghĩa).
Xét tam giác HMA và tam giác HME có: chung HM ; góc AHM = góc EHM (cmt) ; HA = HE (gt)
=> tam giác HMA = tam giác HME (c.g.c) (1)
=> MA = ME (2 cạnh tương ứng) mà MA = MD (gt) nên ME = MD.
c) Vì ME = MD nên tam giác MDE cân tại M. => góc MED = góc MDE (t/c) (2)
Từ (1) => góc MAH = góc MEH (3)
Từ (2) và (3) => góc DEA = góc DAE + góc ADE => góc DEA = 90o
=> DE vuông góc AH. (**)
Từ (*) và (**) => DE // BC
Xét tứ giác ABDC có
AB//DC
AC//BD
Do đó: ABDC là hình bình hành
=>AD cắt BC tại trung điểm của mỗi đường
=>K là trung điểm chung của AD và BC
Xét ΔAED có
H,K lần lượt là trung điểm của AE,AD
=>HK là đường trung bình của ΔAED
=>HK//ED
Ta có: HK//ED
HK\(\perp\)AE
Do đó: ED\(\perp\)AE
=>ΔAED vuông tại E
Ta có: ΔEAD vuông tại E
mà EK là đường trung tuyến
nên KE=KD
=>ΔKED cân tại K
a )
Xét tam giác ABM và tam giác ACM có:
BM = MC ( vì M là trung điểm của BC )
AM là cạnh chung
AB = AC ( gt )
=> tam giác ABM = tam giác ACM ( c.c.c )
b) Xét tam giác AEH và tam giác CEM có:
EH = EM (gt)
góc AEM = góc MEC (2 góc đối đỉnh )
AE = EC ( vì E là trung điểm của AC )
=> tam giác AEK = tam giác CEM (c.g.c)
c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu
kinh thế dài thế này giải hơi lâu á
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD