Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\)
\(\left(x-2y\right)^2-4\left(x-2y\right)+4=\left(x-2y-2\right)^2\)
\(\left(a^2+1\right)^2-6\left(a^2+1\right)+9=\left(a^2+1-3\right)^2=\left(a^2-2\right)^2\)
\(\left(x+y\right)^2+\left(x+y\right)x+\frac{1}{4}x^2=\left(x+y+\frac{1}{2}x\right)^2=\left(\frac{3}{2}x+y\right)^2\)
\(16x^4-9x^2=x^2\left(16x^2-9\right)=x^2\left(4x-4\right)\left(4x+3\right)\)
\(a^2-b^4=\left(a-b^2\right)\left(a+b^2\right)\)
(x + 2y)2 - 16
= (x + 2y)2 - 42
= (x + 2y - 4).(x + 2y + 4)
(x - 2y)2 - 4.(x - 2y) + 4
= (x - 2y)2 - 2.(x - 2y).2 + 22
= (x - 2y - 2)2
(a2 + 1)2 - 6.(a2 + 1) + 9
= (a2 + 1)2 - 2.(a2 + 1).3 + 32
= (a2 + 1 - 3)2
= (a2 - 2)2
(x + y)2 + (x + y).x + 1/4.x2
= (x + y)2 + 2.(x + y).1/2.x + (1/2.x)2
= (x + y + 1/2.x)2
= (3/2.x + y)2
16x4 - 9x2
= (4x2)2 - (3x)2
= (4x2 - 3x).(4x2 + 3x)
a2 - b4
= a2 - (b2)2
= (a - b2).(a + b2)
a)
áp dụng hằng đẳng thức hiệu 2 bình phương
\(\left(x-2\right)^2-\left(4\right)^2=\left(x-2-4\right)\left(x-2+4\right)=\left(x-6\right)\left(x-2\right)\)
b)
áp dụng HDT : bình phương của 1 hiệu
\(\left(x-2y\right)^2-2.2.\left(x-2y\right)+2^2=\left(x-2y-2\right)^2=\left(x-2y-2\right)\left(x-2y-2\right)\)
c)
áp dụng HDT : bình phương của 1 hiệu
\(\left(a^2+1\right)^2-2.3.\left(a^2+1\right)+3^2=\left(a^2+1-3\right)^2=\left(a^2-2\right)^2=\left(a^2-2\right)\left(a^2-2\right)\)
d) áp dụng HDT : bình phương của 1 tồng
\(\left(x+y\right)^2+2.\frac{1}{2}.\left(x+y\right).x+\left(\frac{1}{2}x\right)^2=\left(x+y+\frac{1}{2}x\right)^2=\left(\frac{3}{2}x+y\right)\left(\frac{3}{2}x+y\right)\)
Chúc bạn học tốt nha!!!
T I C K ủng hộ nha
\(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\\ =-\dfrac{x^2-y^2}{x^3-3x^2y+3xy^2-y^3}\\ =-\dfrac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^3}\\ =-\dfrac{x+y}{\left(x-y\right)^2}\\ =-\dfrac{x+y}{x^2-2xy+y^2}\)
cái này là hđt hết ak
A) ta có : \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2xz\)
B) ta có : \(\left(x+y+1\right)\left(x+y-1\right)=\left(x+y\right)^2-1\)
C) ta có : \(\left(x+5\right)\left(x-5\right)+\left(y-x\right)\left(y+x\right)=x^2-25+y^2-x^2\)
\(=y^2-25=\left(y-5\right)\left(y+5\right)\)
D) ta có : \(\left(x+2y\right)\left(x-2y\right)=x^2-\left(2y\right)^2=x^2-4y^2\)
E) ta có : \(\left(x+21\right)\left(x+19\right)=\left(x+20+1\right)\left(x+20-1\right)\)
\(=\left(x+20\right)^2-1\)
G) ta có : \(\left(3x+2y\right)\left(3x-2y\right)=\left(3x\right)^2-\left(2y\right)^2=9x^2-4y^2\)
H) ta có : \(\left(x+y+1\right)^2=x^2+y^2+1+2xy+2y+2x\)
I) ta có : \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)
A.(x+2y).(x+2y-1) = x^2 +4xy + 4y^2 - x - 2y
B. (x-2y).(x+2y-1) = x^2 - x - 4y^2 + 2y
C. (x-2y).(x-2y+1) = x^2 - 4xy + 4y^2 + x - 2y
D.(x+2y).(x-2y) = x^2 - 4y^2
=>....
Áp dụng quy tắc đổi dấu ta có:
Vậy đa thức cần điền là x – 2y
Chọn đáp án B