K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

Cách này khá phức tạp dùng để tìm BĐT phụ

Để giải dễ hơn và không mất tính tổng quát thì giả sử a+b+c=3. Điểm rơi: a=b=c=1 và Min=3/4

Bất đẳng thức quy về dạng

\(\frac{a}{\left(a-3\right)^2}+\frac{b}{\left(b-3\right)^2}+\frac{c}{\left(c-3\right)^2}\ge\frac{3}{4}\)

Tìm m,n sao cho: \(\frac{a}{\left(a-3\right)^2}\ge am+n\)

Tương tự với \(\frac{b}{\left(b-3\right)^2}\)và \(\frac{c}{\left(c-3\right)^2}\)

Ta có: \(VT\ge\left(a+b+c\right)m+3n=3\left(m+n\right)\)

\(\Rightarrow3\left(m+n\right)=\frac{3}{4}\Rightarrow m+n=\frac{1}{4}\Rightarrow m=\frac{1}{4}-n\)

Thế ngược lên trên: 

\(\frac{a}{\left(a-3\right)^2}\ge\frac{1}{4}a-an+n\)

\(\Leftrightarrow\frac{a}{\left(a-3\right)^2}-\frac{1}{4}a\ge n\left(1-a\right)\)

\(\Leftrightarrow a\left(\frac{1}{\left(a-3\right)^2}-\frac{1}{4}\right)\ge n\left(1-a\right)\)

\(\Leftrightarrow a\left(\frac{-\left(a^2-6a+5\right)}{4\left(a-3\right)^2}\right)\ge n\left(1-a\right)\)

\(\Leftrightarrow\frac{a\left(1-a\right)\left(a-5\right)}{4\left(a-3\right)^2}\ge n\left(1-a\right)\)

\(\Rightarrow n=\frac{a\left(a-5\right)}{4\left(a-3\right)^2}=\frac{1}{4}\)khi a=1 (điểm rơi lấy xuống)

\(\Rightarrow m=\frac{1}{2}\)

BĐT phụ cần CM: \(\frac{a}{\left(a-3\right)^2}\ge\frac{2a-1}{4}\)

31 tháng 3 2019

Cho a,b,c>0. Cmr: a/(b+c)^2+b/(c+a)^2+c/(a+b)^2>=9/[4(a+b+c)]. Giup minh vs...!? | Yahoo Hỏi & Đáp

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

23 tháng 9 2017

Đặt \(\left(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\right)\rightarrow\left(x;y;z\right)\) Khi đó ta có:

\(\left(x+y+z\right)^2+14xyz\ge4\)

Theo BĐT Nesbit \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\Rightarrow x+y+z\ge\frac{3}{2}\)

\(VT=\left(x+y+z\right)^2+14xyz=x^2+y^2+z^2+2\left(xy+yz+xz\right)+14xyz\)

\(=x^2+y^2+z^2+6xyz+2\left(xy+yz+xz\right)+8xyz\)

\(\ge x^2+y^2+z^2+\frac{9xyz}{x+y+z}+2\left(xy+yz+xz\right)+8xyz\)

\(\ge4\left(xy+yz+xz\right)+8xyz=4\)

16 tháng 1 2020

\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{c+a}\right)^2+\left(\frac{\sqrt{c}}{a+b}\right)^2\right]\)

Áp dúng bất đẳng thức Bunhiacopxki ta có : 

\(VT\ge\left(\sqrt{a}.\frac{\sqrt{a}}{b+c}+\sqrt{b}.\frac{\sqrt{b}}{c+a}+\sqrt{c}.\frac{\sqrt{c}}{a+b}\right)^2\)

\(\Leftrightarrow VT\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)

Xét \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Áp dụng bất đẳng thức Cauchy dạng phân thức ta có :

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow VT\ge\frac{9}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

25 tháng 1 2021

????????????????????????????????????????

11 tháng 8 2020

Ta còn có:

Bất đẳng thức \(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{1}{k\left(a^2+b^2+c^2\right)+\left(\frac{2}{9}-k\right)\left(ab+bc+ca\right)}\)

đúng với mọi a,b,c,k không âm (k = \(\text{constant}\))

16 tháng 8 2017

bài này thật ra không khó chỉ cần tách đúng là được à bạn thử ngồi tách xem đi 

16 tháng 8 2017

rồi được rồi nhưng hơi dài nên mình sẽ viết 2 lần nhé

26 tháng 12 2019

Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.

27 tháng 12 2019

Thấy có lời giải này hay hay nên mình copy lại nha (Trong sách Yếu tố ít nhất - Võ Quốc Bá Cẩn)

21 tháng 8 2017

mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi

21 tháng 8 2017

thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm