Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)
\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)
Đẳng thức xảy ra khi a = b = c = 1
Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.
Đặt M; N; P như sau:
\(M=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge N=\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge P=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}.\)
1./ Xét hiệu: M - P
\(M-P=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}=a-b+b-c+c-a=0\)
=> M = P
2./ Bất đẳng thức \(M\ge N\ge P\)có \(M=P\)=> \(M=N=P\)
3./ Khi M = N, ta có hiệu: M - N = 0 nên:
\(\frac{a^2-c^2}{a+b}+\frac{b^2-a^2}{b+c}+\frac{c^2-b^2}{c+a}=0\)
\(\Leftrightarrow\frac{\left(a^2-c^2\right)\left(b+c\right)\left(c+a\right)+\left(b^2-a^2\right)\left(a+b\right)\left(a+c\right)+\left(c^2-b^2\right)\left(a+b\right)\left(c+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow a^4+b^4+c^4=a^2b^2+b^2c^2+c^2a^2\)(1)
Mặt khác ta luon có bất đẳng thức: \(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)dấu "=" khi a2 = b2 = c2
Do đó để xảy ra đẳng thức (1) thì a2 = b2 = c2 hay |a| = |b| = |c|. ĐPCM
Làm thì mình nghĩ mình làm dc nhưng có cái giờ phải đi học rồi . Nếu tối nay chưa ai trả lời mình sẽ trả lời
bất đẳng thức trên tương đương: \(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\ge6abc\)
Theo Cô-si: \(VT\ge6\sqrt[6]{\left(a^2b\right).\left(ab^2\right).\left(b^2c\right).\left(bc^2\right).\left(c^2a\right).\left(ca^2\right)}=6abc\)
Dấu "=' xảy ra khi a=b=c
\(VT=\frac{b^2c^2}{bc\left(a^2+ab+bc+ca\right)}+\frac{c^2a^2}{ca\left(b^2+ab+bc+ca\right)}+\frac{a^2b^2}{ab\left(c^2+ab+bc+ca\right)}\)
ÁP DỤNG BĐT CAUCHY - SCHWARZ TA ĐƯỢC:
=> \(VT\ge\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\)
TA SẼ CHỨNG MINH: \(\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\ge\frac{3}{4}\)
<=> \(4\left(ab+bc+ca\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)
<=> \(4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)
<=. \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
MÀ ĐÂY LẠI LÀ 1 BĐT LUÔN ĐÚNG !!!!!
=> VẬY TA CÓ ĐPCM.
DẤU "=" XẢY RA <=> \(a=b=c\)