Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=9^2+12^2=15^2\)
=>BC=15(cm)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
=>\(\widehat{C}\simeq37^0\)
=>\(\widehat{B}=90^0-\widehat{C}=53^0\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>AH=EF
ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: ΔABC vuông tại A có AK là đường trung tuyến
nên KA=KB=KC
KA=KC
=>\(\widehat{KAC}=\widehat{KCA}\)
\(\widehat{AFE}+\widehat{KAC}\)
\(=\widehat{AHE}+\widehat{KCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AK vuông góc EF
Câu b: Xet tg vuông AEH và tg vuông ABC có
^BAH = ^ACB (cùng phụ với ^ABC)
=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)
\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)
Câu c:
Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AMC cân tại M => ^MAC = ^ACB mà ^BAH = ^ACB (cmt) => ^MAC = ^BAH (1)
Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)
Gọi giao của AH với EF là O xét tg AOF có
AH=EF (hai đường chéo HCN = nhau)
O là trung điểm của AH vào EF
=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)
Từ (2) và (3) => ^AFE = ^ABC (4)
Mà ^ABC + ^ACB = 90 (5)
Từ (1) (4) (5) => ^MAC + ^AFE = 90
Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K
a: Xét ΔCAB có
E,D lần lượt là trung điểm của CA,CB
=>ED là đường trung bình của ΔCAB
=>ED//AB và \(ED=\dfrac{AB}{2}\)
Ta có: ED//AB
AB\(\perp\)AC
Do đó: ED\(\perp\)AC tại E
=>CA\(\perp\)FD tại E
Xét ΔCFD vuông tại C có CE là đường cao
nên \(FE\cdot FD=CF^2\left(1\right)\)
Xét ΔCFB vuông tại C có CH là đường cao
nên \(FH\cdot FB=FC^2\left(2\right)\)
Từ (1) và (2) suy ra \(FE\cdot FD=FH\cdot FB\)
b: Xét tứ giác AHCB có
\(\widehat{CHB}=\widehat{CAB}=90^0\)
=>AHCB là tứ giác nội tiếp đường tròn đường kính BC
=>\(\widehat{HCA}=\widehat{HBA}\)
=>\(\widehat{ABH}=\widehat{ECH}\)
Xét ΔCHB vuông tại H và ΔFCB vuông tại C có
\(\widehat{CBH}\) chung
Do đó: ΔCHB đồng dạng với ΔFCB
=>\(\dfrac{HB}{CB}=\dfrac{HC}{FC}\)
=>\(\dfrac{HB}{HC}=\dfrac{CB}{FC}\left(1\right)\)
Xét ΔABC vuông tại A và ΔECF vuông tại E có
\(\widehat{ACB}=\widehat{EFC}\left(=90^0-\widehat{CDF}\right)\)
Do đó: ΔABC đồng dạng với ΔECF
=>\(\dfrac{AB}{CE}=\dfrac{BC}{CF}\)(2)
Từ (1) và (2) suy ra \(\dfrac{HB}{HC}=\dfrac{AB}{CE}\)
Xét ΔABH và ΔECH có
\(\dfrac{HB}{HC}=\dfrac{AB}{CE}\)
\(\widehat{HBA}=\widehat{HCE}\)
Do đó: ΔABH đồng dạng với ΔECH