K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

Dựa vào Atlat trang 6-7, dẫn chứng về mối quan hệ giữa độ nông –sâu, rộng – hẹp của thềm lục địa với vùng đồng bằng, đồi núi kế bên là:

- Ở các đồng bằng châu thổ Bắc Bộ và Nam Bộ, thềm lục địa khu vực vùng biển Bắc Bộ và Nam Bộ rộng, nông, thoải, các đường đẳng sâu thoải dần ra biển, diện tích khu vực có độ sâu dưới 200m rất lớn.

- Ở khu vực ven biển miền Trung, nhất là Nam Trung Bộ có núi ăn lan ra sát biển, thềm lục địa hẹp, dốc, các đường đẳng sâu đổ mau xuống độ sâu 2000m.



 

12 tháng 12 2018

Cơ cấu chi tiêu của người dân Việt Nam, phân theo các khoản chi

Các khoản chi Số phần trăm
  1975 1989
Ăn 71,5 67,1
Mặc 6,1 10,4
Mua sắm 14,1 15,6
Chi khác 8,3 6,9
Cộng 100 (%) 100 (%)
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

\(AD = BC\) nhưng \(AD\) và \(BC\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \) không bằng nhau.

\(CD > AB\) do đó hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) không bằng nhau.

\(AC\) và \(BD\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) không bằng nhau.

24 tháng 9 2023

24 tháng 9 2023

Tham khảo:

 

Kí hiệu O, E, F là các điểm như trên hình vẽ.

Dễ thấy: tứ giác OEMF là hình bình hành nên \(\overrightarrow {OE}  + \overrightarrow {OF}  = \overrightarrow {OM} \) hay \(\overrightarrow v  + \overrightarrow u  = \overrightarrow {OM} \)

Và \(\overrightarrow {OC}  = 3.\overrightarrow {OM}  \Rightarrow 3\left( {\overrightarrow v  + \overrightarrow u } \right) = 3.\overrightarrow {OM}  = \overrightarrow {OC} \)

Mặt khác: \(\overrightarrow {OA}  = 3.\overrightarrow {OF}  = 3\;\overrightarrow u ;\;\overrightarrow {OB}  = 3.\overrightarrow {OE}  = 3\;\overrightarrow v \)

Và \(\overrightarrow {OB}  + \overrightarrow {OA}  = \overrightarrow {OC} \) hay \(3\;\overrightarrow v  + 3\;\overrightarrow u  = \overrightarrow {OC} \)

\( \Rightarrow 3\left( {\overrightarrow v  + \overrightarrow u } \right) = 3\;\overrightarrow v  + 3\;\overrightarrow u \)

17 tháng 5 2017

Thống kê

15 tháng 5 2017

Hình a) có Δ > 0 ⇒ f(x) cùng dấu với a khi x nằm ngoài khoảng hai nghiệm của phương trình f(x) = 0; f(x) trái dấu với a khi x nằm trong khoảng hai nghiệm của phương trình f(x) = 0.

Hình b) có Δ = 0 ⇒ f(x) cùng dấu với a, trừ khi x = - b/2a.

Hình c) có Δ < 0 ⇒ f(x) cùng dấu với a.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Bước 1: Áp dụng hệ quả của định lí cosin trong tam giác HCL, ta có:

\(\begin{array}{l}\cos \;\widehat {CHL} = \frac{{C{H^2} + H{L^2} - C{L^2}}}{{2.CH.HL}} = \frac{{{{78}^2} + {{104}^2} - {{49}^2}}}{{2.78.104}} = \frac{{4833}}{{5408}}\\ \Rightarrow \;\widehat {CHL} \approx {26^o}39'40,05''\end{array}\)

Áp dụng hệ quả của định lí cosin trong tam giác HLR, ta có:

\(\begin{array}{l}\cos \;\widehat {LHR} = \frac{{H{L^2} + H{R^2} - L{R^2}}}{{2.HL.HR}} = \frac{{{{104}^2} + {{77}^2} - {{56}^2}}}{{2.104.77}} = \frac{{13609}}{{16016}}\\ \Rightarrow \;\widehat {LHR} \approx {31^o}49'10,4''\\ \Rightarrow \;\widehat {CHR} \approx {58^o}28'50,45''\end{array}\)

Bước 2: Áp dụng định lí cosin \(C{R^2} = H{C^2} + H{R^2} - 2.HC.HR\cos \widehat {CHR}\)

\(\begin{array}{l} \Leftrightarrow C{R^2} = {78^2} + {77^2} - 2.78.77\cos {58^o}28'50,45''\\ \Rightarrow CR \approx 75,72\end{array}\)

Vậy khoảng cách giữa Châu Đốc và Rạch Giá là 75, 72 km.

4 tháng 10 2016

A = {x < 20 | x thuộc N} 

   = {1 ; 2 ; 3 ; ... ; 19}

B = {x lẻ | x khác 0}

   = {1 ; 3 ; 5 ; 7 ; ...}

\(A\subset N\)

\(B\subset N\)

13 tháng 10 2016

​A= {X<20|x thuộc N }

= {1;2;3...;19}

​B= { x lẻ |x khác 0}

​= { 1;3:5:7,...}

A€ N

B€ N

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Dựa vào độ thị ta thấy (0; 0); (2; 2); (-2; 2) nằm trên đồ thị hàm số \(y = \frac{1}{2}{x^2}\)

Ta nhận ra được: \(\begin{array}{l}0 = \frac{1}{2}{.0^2}\\2 = \frac{1}{2}{.2^2}\\2 = \frac{1}{2}.{( - 2)^2}\end{array}\) Vì vậy những điểm có tọa độ \(\left( {x;\frac{1}{2}{x^2}} \right)\) sẽ nằm trên đồ thị.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Vì ABCD là hình bình hành nên \(\left\{ \begin{array}{l}AD//\;BC\\AD = BC\end{array} \right.\), hay \(\overrightarrow {AD}  = \overrightarrow {BC} \).

Do đó \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).