K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

Xin phép tách ra để bài giải trở nên đẹp hơn :))

Do X1 ; X2 là 2 nghiệm của phương trình \(5x^2-3x-1\) nên theo định lý Viete ta có:

\(X_1X_2=-\frac{1}{5};X_1+X_2=\frac{3}{5}\)   (  1  )

Khi đó ta có:

\(A=\frac{X_1}{X_2}+\frac{X_1}{X_2+1}+\frac{X_2}{X_1}+\frac{X_2}{X_1+1}-\left(\frac{1}{X_1}+\frac{1}{X_2}\right)\) ( theo mình ở đây là +,không biết có đúng ko :V )

\(=\frac{X_1^2+X_2^2}{X_1X_2}+\frac{X_1^2+X_1+X_2^2+X_2}{X_1X_2+X_1+X_2+1}-\frac{X_2+X_1}{X_1X_2}\)

\(=\frac{\left(X_1+X_2\right)^2-2X_1X_2-\left(X_1+X_2\right)}{X_1X_2}+\frac{\left(X_1+X_2\right)^2-2X_1X_2+\left(X_1+X_2\right)}{\left(X_1+X_2\right)+X_1X_2+1}\)

Bạn thay (  1  ) vào là ra nhé :)

14 tháng 4 2020

Thanksss kiuuu:>>

13 tháng 7 2020
Chi mà khó rứa
29 tháng 11 2023

\(x^2-4x-6=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)

=>Phương trình này có hai nghiệm phân biệt

Theo vi-et, ta có:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4^2-2\cdot\left(-6\right)=16+12=28\)

\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)

\(C=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)

\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)

\(D=\left|x_1-x_2\right|\)

\(=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)

26 tháng 5 2021

a) Áp dụng đl Vi-ét vào pt ta có:

x1+x2=-1.5

x1 . x2= -13

C=x1(x2+1)+x2(x1+1)

 = 2x1x2 + x1+x2

= 2.(-13) -1.5

= -26 -1.5

= -27.5

26 tháng 5 2021

a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)

Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)

\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)

3 tháng 6 2021

Áp dụng viet vào pt \(x^2+px+1=0\) ta được:\(\left\{{}\begin{matrix}a+b=-p\\ab=1\end{matrix}\right.\)

Áp dụng viet vào pt \(x^2+qx+2=0\) ta được:\(\left\{{}\begin{matrix}b+c=-q\\bc=2\end{matrix}\right.\)

\(A=pq-\left(b-a\right)\left(b-c\right)=-\left(a+b\right).-\left(b+c\right)-\left(b^2-bc-ab+ac\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

\(=2ab+2bc=6\)

3 tháng 6 2021

Phương trình: \(x^2+px+1=0\)

Có 2 nghiệm:a,b

\(\Rightarrow\left\{{}\begin{matrix}a+b=-p\\a.b=1\end{matrix}\right.\)                    \(\Leftrightarrow\left\{{}\begin{matrix}p=-\left(a+b\right)\\1=a.b\end{matrix}\right.\)

Phương trình \(x^2+px+2=0\)

Có 2 nghiệm:b,c

\(\Rightarrow\left\{{}\begin{matrix}b+c=-q\\b.c=2\end{matrix}\right.\)                     \(\Leftrightarrow\left\{{}\begin{matrix}q=-\left(b+c\right)\\2=b.c\end{matrix}\right.\)

Ta có: \(p.q-\left(b-a\right)\left(b-c\right)\)

\(=-\left(a+b\right).\left[-\left(b+c\right)\right]-\left(b-a\right)\left(b-c\right)\)

\(=\left(a+b\right)\left(b+c\right)-\left(b-a\right)\left(b-c\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

=\(\left(ab+ab\right)+\left(ac-ac\right)+\left(b^2-b^2\right)+\left(bc+bc\right)\)

\(=2ab+2bc\)

\(=2.1+2.2\)

=6

-Chúc bạn học tốt-

 

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :DCâu 1:a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)Câu 2:a) Giải phương...
Đọc tiếp

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :D

Câu 1:

a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)

b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)

Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)

Câu 2:

a) Giải phương trình: \(\frac{\sqrt{3x+1}+\sqrt{x+3}}{x+5+\sqrt{2\left(x^2+1\right)}}=\left(1-x\right)\sqrt{1-x}+\frac{3-3\sqrt{x}}{2}\)

b) Giải hệ phương trình:  \(\hept{\begin{cases}14x^2-21y^2-6x+45y-14=0\\35x^2+28y^2+41x-122y+56=0\end{cases}}\)

Câu 3:

a)  Cho \(x_0;x_1;x_2;.......\) được xác định bởi: \(x_n=\left[\frac{n+1}{\sqrt{2}}\right]-\left[\frac{n}{\sqrt{2}}\right]\).

Hỏi trong 2006 số đầu tiên của dãy có mấy số khác 0

b)  Giải phương trình nghiệm nguyên: \(m^n=n^{m-n}\)

c) Cho phương trình \(x^2-4x+1=0\). Gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Đặt \(a_n=\frac{x_1^n+x_2^n}{2\sqrt{3}}\) với n là số nguyên dương. Chứng minh rằng \(a_n\) là một số nguyên với mọi n

d) Cho bộ số nguyên dương thỏa mãn \(a^2+b^2=c^2\). Chứng minh rằng không thể tồn tại số nguyên dương n sao cho:

\(\left(\frac{c}{a}+\frac{c}{b}\right)^2=n\)

Câu 4:

a) Cho các số dương a,b,c. Chứng minh rằng:

\(\frac{a\left(b+c\right)}{a^2+bc}+\frac{b\left(c+a\right)}{b^2+ca}+\frac{c\left(a+b\right)}{c^2+ab}\ge1+\frac{16abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

b) Cho các số không âm a,b,c thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{b^2-bc+c^2}{a^2+bc}}+\sqrt{\frac{c^2-ca+a^2}{b^2+ca}}+\sqrt{\frac{a^2-ab+b^2}{c^2+ab}}+\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)

Câu 5:

1)

Cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H, EF cắt BC tại P. Qua D kẻ đường thẳng song song EF cắt AB, AC lần lượt tại Q, R.

a) Chứng minh rằng \(\frac{PB}{PC}=\frac{DB}{DC}\)

b) Gọi X là trung điểm AH. EF cắt AH tại Y. Chứng minh rằng Y là trực tâm tam giác XBC.

2)

Cho E và F lần lượt là các trung điểm của cạnh AD và CD của hình bình hành ABCD sao cho \(\widehat{AEB}=\widehat{AFB}=90^0\), và G là điểm nằm trên BF sao cho EG // AB. Gọi DH, AF lần lượt cắt cạnh BC, BE tại I, H. Chứng minh  rằng \(FI\perp FH\)

Câu 6:

Tìm giá trị nhỏ nhất của a là cạnh hình vuông sao cho có thể đặt 5 tấm bìa hình tròn bán kính 1 trong hình vuông đó mà các tấm bìa không chờm lên nhau.

 GOODLUCK.

WARNING: COMMENT LUNG TUNG SẼ BỊ CÔ QUẢN LÝ CHO "PAY ẶC" nhé !

Thời gian làm bài ( 180 phút ).

16
8 tháng 8 2020

Thời gian được tính từ 7 giờ 30 phút từ sáng mai nha mọi người :D ai làm được bài nào ( 1 ý thôi cũng được ) thì " chốt đơn" 11h post lên nhé :D 

8 tháng 8 2020

Bất đẳng thức học kì mà cho vậy có lẽ không phù hợp á bác Cool Kid.

18 tháng 7 2017

ques này nhiều ng` hỏi r` thay ab+bc+ca=1 vào rồi phân tích rút gọn

26 tháng 9 2017

Do ab + bc + ca = 1 nên ta có : 

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}=a\sqrt{\frac{\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)}{a^2+ab+ac+bc}}\)

\(=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\sqrt{\left(b+c\right)^2}=a\left(b+c\right)=ab+ac\text{ }\left(1\right)\)

Tương tự : \(b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}=ab+bc\)  (2)và \(c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=bc+ac\) (3)

Cộng vế với vế của (1) ; (2) ; (3) lại ta được :

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=2\left(ab+bc+ac\right)=2\)

26 tháng 9 2017

khó thế bạn