Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài hình chiếu thứ nhất là x
=>Độ dài hình chiếu thứ 2 là x+14
Theo đề, ta có: x^2+14x=24^2=576
=>x^2+14x-576=0
=>x=18
=>Độ dai cạnh huyền là 18+18+14=50cm
\(a=\sqrt{18\cdot50}=30\left(cm\right)\)
\(b=\sqrt{32\cdot50}=40\left(cm\right)\)
S=1/2*30*40=15*40=600cm2
có S AHB = AH.HB/2 = 54 (gt) => AH.HB = 108
S AHC = AH.HC/2 = 96 (gt) => AH.HC = 192
=> AH^2.HB.HC = 108.192 = 20736 (1)
tg ABC có ^A = 90 (gt) ; AH _|_ BC => AH^2 = HB.HC (đl)
=> AH^4 = AH^2.HB.HC và (1)
=> AH^4 = 20736
=> AH = 12 do AH > 0
có AH.HB = 108 => HB = 9
AH.HC = 192 => HC = 16
=> HB + HC = 9 + 16 = 25
Gọi độ dài đoạn thẳng ngắn hơn được chia trên cạnh huyền là x (cm) với x>0
\(\Rightarrow\) Độ dài đoạn còn lại là \(x+14\)
Áp dụng hệ thức lượng trong tam giác vuông:
\(24^2=x\left(x+14\right)\)
\(\Leftrightarrow x^2+14x-576=0\Rightarrow\left[{}\begin{matrix}x=18\\x=-32\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\) Độ dài cạnh huyền là: \(18+\left(18+14\right)=50\left(cm\right)\)
Diện tích tam giác: \(S=\dfrac{1}{2}.24.50=600\left(cm^2\right)\)
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
T/c dg` trug tuyến ứng với cah huyền trog tam giác vuông = \(\frac{1}{2}\)cah huyền
=> BC = 10*2 = 20 cm
gọi x là cạnh góc vuông thứ nhất (x >0)
x - 4 là cạnh góc vuông thứ hai
Xét tam giác ABC vuông tại A, ta có:
\(^{BC^2}\) = AB2 + AC2
202 = x2 + (x+4)2
400 = x2 + x2 + 8x + 16
= 2x2 +8x - 364
\(\Delta\)= b2 = 4*a*c
= 3136 >0
vì \(\Delta\)> 0 nên pt luôn có 2 nghiệm phân biệt
x1=\(\frac{-b-\sqrt{\Delta}}{2a}\)=-16 (loại)
x2 =\(\frac{-b+\sqrt{\Delta}}{2a}\)=12( nhận)
Vậy x = 12 cm
x+4=12+4=16cm
Gọi x : là cạnh góc vuông thứ nhất
Gọi x - 4 : là cạnh góc vuông thứ hai
Gọi y : là cạnh huyền
Gọi z : là đường trung tuyến ứng với cạnh huyền
ĐIỀU KIỆN : x > 4
ta có : y = 2 z = 2 . 10 = 20 cm ( tính chất đường trung tuyến ứng với cạnh huyền )
ta có : y = x2 + (x - 4 ) 2
<=> 20= x2 + x2 - 2x . 4 + 42
<=> 20= 2x2 - 8x + 16
<=> 0 = 2x2 - 8x + 16 - 20
<=> 2x2 - 8x -4 = 0
( a= 2 ; b = -8 ; c = -4 )
\(\Delta=b^2-4ac\)
\(\Delta=\left(-8\right)^2-4.2.\left(-4\right)\)
\(\Delta=64+32\)
\(\Delta=96\) > 0
\(\sqrt{\Delta}=\sqrt{96}=4\sqrt{6}\)
\(x_1=\frac{8+4\sqrt{6}}{2.2}=2+\sqrt{6}cm>0\left(nhan\right)\)
\(x_2=\frac{8-4\sqrt{6}}{2.2}=2-\sqrt{6}< 0\) \(\left(LOAI\right)\)
với x= \(2+\sqrt{6}\)=> cạnh góc vuông thứ nhất là \(2+\sqrt{6}cm\)
voi x= \(2+\sqrt{6}\)=> cạnh góc vuông thứ hai là \(2+\sqrt{6}-4=-2+\sqrt{6}cm\)
DIỆN TÍCH CỦA MIENG ĐẤT HÌNH TAM GIÁC :
x . ( x - 4 )
=\(\left(2+\sqrt{6}\right).\left(-2+\sqrt{6}\right)\)
=\(2\left(cm^2\right)\)
Vay : diện tích của miếng đất hình tam giác là 2 cm2
Giả sử tam giác ABC vuông tại A và đường cao AH chia tam giác thành 2 phần có diện tích là \(54cm^2\) và \(96cm^2\).
Giả sử \(S_{AHB}=54cm^2,S_{AHC}=96cm^2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}.AH.HB=54\\\dfrac{1}{2}.AH.HC=96\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AH.HB=108\\AH.HC=192\end{matrix}\right.\)
\(\Rightarrow AH^2.HB.HC=20736\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=HB.HC\)
\(\Rightarrow AH^2.HB.HC=AH^2.AH^2=AH^4=20736\Rightarrow AH=12\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{108}{12}=9\\HC=\dfrac{192}{12}=16\end{matrix}\right.\Rightarrow BC=HB+HC=9+16=25\left(cm\right)\)
Gọi độ dài cạnh góc vuông 1 là x
=>Độ dài cạnh góc vuông 2 là x+2
Theo đề, ta có: x^2+x^2+4x+4=5^2=25
=>2x^2+4x-21=0
=>x=(-2+căn 46)/2
=>Độ dài cạnh góc vuông 2 là (2+căn 46)/2
Độ dài đường cao là:
\(\dfrac{\left(-2+\sqrt{46}\right)\left(2+\sqrt{46}\right)}{2}:5=\dfrac{46-4}{2}:5=\dfrac{42}{10}=4,2\)
Mình làm thế này có ổn ko?
Gọi tam giác ABC vuông tại A cạnh huyền BC là 10cm và đường cao AH (H thuộc BC) là 6cm
Vậy ta có: \(HB+HC=10\)
Dùng hệ thức lượng trong tam giác vuông ta có: \(HB.HC=AH^2=36\)
Vậy ta có: \(\hept{\begin{cases}HB+HC=10=S\\HB.HC=36=P\end{cases}}\)\
Vì \(S^2-4P=10^2-4.36\)\(=100-144=-44< 0\)
Vậy không có HB, HC nào thỏa mãn hpt trên (trái với hệ thức lượng trong tam giác vuông)
Vậy không có tam giác vuông có cạnh huyền là 10cm và đường cao tương ứng với cạnh huyền là 6cm
là S của hình đó ,dễ mà nhể