Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A.
Nhận xét rằng hàm số dạng (a, b ≠ 0) có tiệm cận đứng là và tiệm cận ngang là y = 0.
Đáp án: A.
Nhận xét rằng hàm số dạng (a, b ≠ 0) có tiệm cận đứng là và tiệm cận ngang là y = 0.
Chọn C.
Với đồ thị hàm số y = a x + 1 b x - 2 nhận đường thẳng x = 2 b làm tiệm cận đứng
Theo đề bài: x = 2 là tiệm cận đứng của đồ thị nên
Với b ≠ 0 đồ thị hàm số y = a x + 1 b x - 2 nhận đường thẳng y = a b làm tiệm cận ngang.
Theo đề bài: y = 3 là tiệm cận ngang của đò thị hàm số nên
Vậy a + b = 4.
Đáp án C
Vì phương trình có ba nghiệm phân biệt nên đồ thị hàm số có ba đường tiệm cận đứng.
Mặt khác, ta có:
nên đường thẳng là đường tiệm cận ngang của đồ thị hàm số .
Và nên đường thẳng y=0 là đường tiệm cận ngang của đồ thị hàm số .
Vậy .
Chọn A
Đk để hàm số xác định là: . Vậy mệnh đề đúng.
Do hàm số có tập xác định nên không tồn tại do đó đồ thị hàm số này không có đường tiệm cận ngang. Vậy mệnh đề sai.
Do nên đồ thị hàm số có đường tiệm cận đứng là và . Vậy đúng.
Ta có
Do bị đổi dấu qua nên hàm số có một cực trị. Vậy mệnh đề đúng.
Do đó số mệnh đề đúng là .
Chọn B
Ta có: nên đồ thị hàm số có tiệm cận ngang y = 0
Và nên đồ thị hàm số có tiệm cận đứng là x = 2.