Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ công thức độc lập, ta có: \(A^2 = x^2+\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\), đây là phương trình của đường Elip.
Đáp án A
+ Đồ thị biểu diễn sự biến thiên của gia tốc theo li độ có dạng là một đoạn thẳng.
Chọn đáp án D
Từ công thức
x 2 + v 2 ω 2 = A 2 ⇒ v 2 = − ω 2 x 2 + ω 2 A 2 ⇒
Đồ thị v 2 theo x là một phần đường parabol − A ≤ x ≤ A
Động năng: \(W_đ=\frac{1}{2}k.x^2\)
Như vậy động năng tỉ lệ với li độ theo hàm bậc 2, do đó đồ thị biểu diễn sự phụ thuộc của động năng theo li độ là parabol.
Đáp án B.
Do gia tốc: \(a=-\omega^2 x\) , nên gia tốc là hàm bậc nhất với li độ, và \(-A \leq x \leq A\) nên đồ thị gia tốc, li độ có dạng đoạn thẳng.
Đáp án: C
x và v vuông pha nhau nên đồ thị biểu diễn v theo x là Đường elip.
Đáp án B
+ Đồ thị biểu diễn sự biến thiên của vận tốc theo li độ trong dao động điều hòa có dạn là một elip.
Đáp án C
+ Đồ thị biểu diễn sự biến thiên của gia tốc theo li độ của chất điểm dao động điều hòa có dạng là một đoạn thẳng.
Đáp án C
+ Đường biểu diễn sự biến thiên của gia tốc theo li độ có dạng một elip.