K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

a) EF là đường trung bình của tam giác ABH => EF//AB; EF=1/2AB (1)

  Có G là trung điểm của DC => GC//AB(DC//AB); GC=1/2AB(DC=AB) (2)

 Từ (1)$(2) => EF//GC; EF=GC => Tứ giác EFCG là hình bình hành.

b) Xét tam giác EBH và tam giác CBH có:BH là cạnh chung

                                                            EHB=CHB=90 (gt)

                                                            EH=EC(H là trung điểm của EC)

     Vậy tam giác EBH=tam giac CBH (cgv-cgv)

          =>BEH=BCH ; EBH=CBH

Lại có:BEH+EBH+BCH+CBH=180 =>BEH=EBH=BCH=CBH=180/4=45 (3)

Co BCE+ECG=BCG

Ma BCG=90(ABCD là hcn); BCE=45(cmt)

    => ECG=45

Xét tam giác EGC có:EGC+GEC+ECG=180

                          => EGC=180-(GEC+ECG)

                                     =180-(90+45)=45 (4)

Tu (3)$(4) => BEG=90

c)Tu CM

19 tháng 12 2016

Cho cái hình đi bb

19 tháng 12 2016

chứng minh OA vuông góc với BC

Ta có AB=AC ( t/c 2 tiếp tuyến cắt nhau tại A)

=> A thuộc đường trung trực BC

OB=OC ( =bk)

=> O thuộc đường trung trực BC

=> OA là cả đường trung trực BC

=> OA vuông góc với BC

Bạn cho t cái hình ik

 

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K

29 tháng 10 2017

Gọi M là trung điểm BC => BM=CM 
Xét tam giác ABC có: 
BM=CM 
AE=EC (giả thiết vì E la trung điểm của AC) 
Nên: EM là đường trung bình trong tam giác ABC 
=>EM//AB và EM=AB/2 
Tương tự: Xét tam giác BCD có: 
FM là đường trung bình trong tam giác BCD 
=>FM//CD và FM=CD/2 
Lại có: 
FM//CD 
mà AB//CD (theo giả thiết ABCD la hthang) 
Nên: FM//AB 
Mà EM//AB 
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng. 
Vậy,EF=FM-EM=(CD-AB)/2  

21 tháng 12 2024

 

 

a. Sỉ cằn

b.sóc lọ