Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài
Câu 6:
Ta có: \(P=\dfrac{1}{x^2+2x\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Mà \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\) nên để P lớn nhất thì \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) nhỏ nhất
Lại có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow P=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
Dấu " = " khi \(x+\dfrac{1}{2}=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy \(MAX_P=\dfrac{4}{3}\) khi \(x=\dfrac{-1}{2}\)
Câu 6:
Ta có:
\(P=\dfrac{1}{x^2+x+1}\)
\(\Leftrightarrow P=\dfrac{1}{x^2+x+\dfrac{1}{4}+\dfrac{3}{4}}\)
\(\Leftrightarrow P=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
\(\Rightarrow P=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le\dfrac{3}{4}}\)
\(\Rightarrow P=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}\)
\(\Rightarrow P=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
Để biểu thức \(P_{max}=\dfrac{4}{3}\)thì \(\left(x+\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x=0-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy \(P_{max}=\dfrac{4}{3}\)tại \(x=-\dfrac{1}{2}\)
Chúc bạn học tốt.Đúng thì tick cho mình nhé
Đặt \(\begin{cases}f\left(x\right)=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\\\left(x+y+z\right)^2=t\left(1\right)\end{cases}\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=t\)
\(\Leftrightarrow x^2+y^2+z^2=t-2\left(xy+yz+zx\right)\)
\(\Rightarrow f\left(x\right)=\left[t-2\left(xy+yz+zx\right)\right]t+\left(xy+yz+zx\right)^2\)
\(\Rightarrow f\left(x\right)=t^2-2t\left(xy+z+zx\right)+\left(xy+yz+zx\right)^2\)
\(\Rightarrow f\left(x\right)=\left(t-xy-yz-zx\right)^2\)
Thay (1) vào ta được \(f\left(x\right)=\left[\left(x+y+z\right)^2-xy-yz-zx\right]\)
\(f\left(x\right)=\left[x^2+y^2+x^2+xy+yz+zx\right]\)
Ta chứng minh BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\), dấu "=" xảy ra khi \(a=b=c\), Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\);\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân 2 vế của BĐT ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\).Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng vào bài toán ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\) (a,b,c có tổng bằng 1)
Dấu "=" xảy ra khi \(\begin{cases}a+b+c=1\\a=b=c\end{cases}\)\(\Rightarrow a=b=c=\frac{1}{3}\)
Câu 4:
A B C D
Giải:
Gọi hình vuông đó là ABCD, đường chéo là BD
Ta có: AB = BC = CD = DA
Xét \(\Delta ABD\left(\widehat{A}=90^o\right)\), áp dụng định lí Py-ta-go ta có:
\(AD^2+AB^2=BD^2\)
\(\Rightarrow2AB^2=50\)
\(\Rightarrow AB^2=25\)
\(\Rightarrow AB=5\)
\(\Rightarrow AB=BC=CD=DA=5\)
Vậy...
Câu 5:
Ta có: \(x+y=7\)
\(\Rightarrow\left(x+y\right)^2=49\)
\(\Rightarrow x^2+2xy+y^2=49\)
\(\Rightarrow2xy+25=49\)
\(\Rightarrow2xy=24\)
\(\Rightarrow xy=12\)
Vậy xy = 12
a) 2a - 1, b + 3, 5 - 2c TLT với 2 , 3 , 4
=>\(\frac{2a-1}{2}=\frac{b+3}{3}=\frac{5-2c}{4}=k\left(kthuocZ\right)\)
=>a=2k+1,b=3k-3,c=(5-4k)/2
Thay vao a+b-c=2 tim duoc k, chu y k thuoc Z, tu do suy ra a,b,c.
b) Tuong tu.
Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}==\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}\)
\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2+y^2+z^2}{1}\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)