Tìm các cặp số nguyên (x;y) thỏa mãn: x^4-y^4=3y^2+1

 
<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

x4-y4-3y2=1

4(x4-y4-3y2)=1

4x4-4y4-12y2=4

4x4-4y4-12y2-9=4-9

4x4-(4y4+12y2+9)=-5

4x4-(2y2+3)2=-5

(2x2)2-(2y2+3)2=-5

áp dụng hằng đẳng thức số 3

(2x2-2y2-3)(2x2+2y2+3)=-5

<=> 2x2-2y2-3=-1

2x2+2y2+3=5

mà 2x2+2y2>4

<=> 2x2+2y2+3 >7

vậy phân thức vô nghiệm

17 tháng 2 2017

câu 5 kq =0

câu 6: góc C=90 độ (tam giác vuông tại C)(Định lý Pytago)

câu 7: 0 giá trị

câu 8:x=1

câu 10: x=3;y=1

x+y=4
bye
nếu đúng tích cho mik nha

Mik cảm ơn trc

17 tháng 2 2017

gioi hoan ho

6 tháng 8 2020

ta có x3+y3=(x+y)(x2-xy+1)=9

mà x+y=3 => x2-xy+1=3 => x2-xy=2 => x(x-y)=2

x,y là số thực => x-y là số thực => x;x-y \(\inƯ_{\left(2\right)}=\left\{-2;-1;1;2\right\}\)

với x=-2 => không có giá trị y thỏa mãn

với x=-1 => không có giá trị y thỏa mãn

với x=1; x+y=3 => y=2

với x=2; x+y=3 => y=1

vậy (x;y)=(1;2);(2;1)

6 tháng 8 2020

x + y = 3 => y = 3 - x

x3 + y3 = 9

<=> x3 + ( 3 - x )3 = 9

<=> x3 - x+ 9x- 27x + 27 - 9 = 0

<=> 9x2 - 27x + 18 = 0

<=> 9( x2 - 3x + 2 ) = 0

<=> 9( x2 - x - 2x + 2 ) = 0

<=> 9[ x( x - 1 ) - 2( x - 1 ) ] = 0

<=> 9( x - 2 )( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Với x = 2 => 2 + y = 3 => y = 1

Với x = 1 => 1 + y = 3 => y = 2

Vậy các cặp số ( x ; y ) thỏa mãn là : ( 2 ; 1 ) , ( 1 ; 2 ) 

19 tháng 10 2021

Trả lời:

a, \(\left(xy+4\right)^2-4\left(x+y\right)^2\)

\(=\left(xy+4\right)^2-\left[2\left(x+y\right)\right]^2\)

\(=\left(xy+4\right)^2-\left(2x+2y\right)^2\)

\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)

\(=\left[\left(xy-2x\right)-\left(2y-4\right)\right]\left[\left(xy+2x\right)+\left(2y+4\right)\right]\)

\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)

\(=\left(y-2\right)\left(x-2\right)\left(y+2\right)\left(x+2\right)\)

b, \(2x-\sqrt{x}=2.\sqrt{x}.\sqrt{x}-\sqrt{x}=\sqrt{x}.\left(2\sqrt{x}-1\right)\)

10 tháng 10 2021

`a,`

`(x+y)^3-1=(x+y)^3-1^3=(x+y-1)[(x+y)^2 +x+y +1]  =(x+y-1)(x^2 +2xy+y^2 +x+y+1]`

`b,`

`100x^2 - (x^2 +25)^2=(10x)^2-(x^2 +25)^2=(10x-x^2-25)(10x +x^2 +25) = -(x-5)^2 (x+5)^2`

10 tháng 10 2021

a) \(\left(x+y\right)^3-1\)

\(=\left(x+y\right)^3-1^3\)

\(=[\left(x+y\right)-1][\left(x+y\right)^2+\left(x+y\right)1+1^2]\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)\)

b) \(100x^2-\left(x^2+25\right)^2\)

\(=\left(10x\right)^2-\left(x^2+25\right)^2\)

\(=[10x-\left(x^2+25\right)][10x+\left(x^2+25\right)]\)

\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)

\(=\left(-x^2+10x-25\right)\left(x^2+10x+25\right)\)

\(=-\left(x^2-10x+25\right)\left(x^2+10x+25\right)\)

\(=-\left(x-5\right)^2.\left(x+5\right)^2\)

\(x^3-3x^2+2=x^3-2x^2-2x-\left(x^2-2x-2\right)\)

\(=x.\left(x^2-2x-2\right)-\left(x^2-2x-2\right)\)

\(=\left(x-1\right).\left(x^2-2x-2\right)\)

\(1,x^3-3x^2+2=0\)

\(x^3-x^2-2x^2+2=0\)

\(x^2\left(x-1\right)-2\left(x^2-1\right)=0\)

\(\left(x-1\right)\left(x^2-2x-2\right)=0\)

6 tháng 3 2021

\(x^2-\left(x+3\right)\left(3x+1\right)=\)\(9\)

\(\Leftrightarrow x^2-9-\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3-3x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-2x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\-2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\-2x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)

Vậy phương trình có tập nghiệm \(S=\left\{-3;-2\right\}\)

6 tháng 3 2021

\(x^3+4x+5=0\)

\(\Leftrightarrow\left(x^3+1\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2=\frac{-19}{4}\left(vn\right)\end{cases}}\)(vn: vô nghiệm).\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất : \(x=-1\)

25 tháng 4 2021

Với mọi \(k\in N\)ta có \(a_k=\frac{2k+1}{\left(k^2+k\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)

Từ đó suy ra \(S=a_1+a_2+a_3+...+a_{2018}\)\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{2017^2}-\frac{1}{2018^2}\)

\(1-\frac{1}{2018^2}\)\(\frac{2017\cdot2019}{2018^2}\)

25 tháng 4 2021

tks nha