Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 7:
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A=\left(x-3\right)^2=21\ge21\)
Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)
Vậy \(MIN_A=21\) khi x = 3
Câu 10:
\(A=4x^2+4x+11\\ =\left[\left(2x\right)^2+2.2x.1+1\right]+10\\ =\left(2x+1\right)^2+10\ge10\left(\forall x\in Z\right)\)
Vậy: \(Min_A=10\) khi \(x=-\frac{1}{2}\)
câu 7 mk bấm nhầm đáp án là 120
qua B kẻ đường thẳng song song với AM cắt AC ở N.
vì AM là phân giác góc BAC nên có :
\(\dfrac{AC}{AB}=\dfrac{CM}{BM}=\dfrac{12}{6}=2\) suy ra \(\dfrac{CM}{BC}=\dfrac{CM}{CM+BM}=\dfrac{12}{12+6}=\dfrac{2}{3}\)
vì AM song song với BN nên có :
1,\(\dfrac{CA}{AN}=\dfrac{CM}{BM}=\dfrac{12}{AN}=2\) suy ra AN=6
2,\(\dfrac{AM}{BN}=\dfrac{CM}{BC}=\dfrac{2}{3}=\dfrac{4}{BN}\)suy ra BN=6
vì AB=6 nên tam giác ABN đều
suy ra \(\widehat{NAB}\)=\(60^0\)
mà \(\widehat{NAB}+\widehat{BAC}=\)\(180^0\)
nên \(\widehat{BAC}=\)\(120^0\)
10) \(9x^2+4y^2=20xy\)
\(\Leftrightarrow\left(3x-2y\right)^2=8xy\)
\(\Rightarrow\left(3x-2y\right)=\sqrt{8xy}\)
--- \(9x^2+4y^2=20xy\)
\(\Leftrightarrow\left(3x+2y\right)^2=32xy\)
\(\Rightarrow\left(3x+2y\right)=\sqrt{32xy}\)
\(A=\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=\frac{1}{2}=0,5\)
5) \(x^3+8-\left(x+2\right)\left(x^2+3x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-\left(x+2\right)\left(x^2+3x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+2=0\Leftrightarrow x=-2\\-5x+1=0\Leftrightarrow x=0,2\end{matrix}\right.\)
Tổng các nghiệm là: -2+0,2=-1,8
(Nhập kết quả dưới dạng số thập phân gọn nhất).
Câu 4:
A B C D
Giải:
Gọi hình vuông đó là ABCD, đường chéo là BD
Ta có: AB = BC = CD = DA
Xét \(\Delta ABD\left(\widehat{A}=90^o\right)\), áp dụng định lí Py-ta-go ta có:
\(AD^2+AB^2=BD^2\)
\(\Rightarrow2AB^2=50\)
\(\Rightarrow AB^2=25\)
\(\Rightarrow AB=5\)
\(\Rightarrow AB=BC=CD=DA=5\)
Vậy...
Câu 5:
Ta có: \(x+y=7\)
\(\Rightarrow\left(x+y\right)^2=49\)
\(\Rightarrow x^2+2xy+y^2=49\)
\(\Rightarrow2xy+25=49\)
\(\Rightarrow2xy=24\)
\(\Rightarrow xy=12\)
Vậy xy = 12
Câu 1:
? 10cm H B A C
ta có: \(S_{ABC}=\dfrac{1}{2}.AH.BC\)
hay \(45=\dfrac{1}{2}.10.BC\)
\(\Rightarrow BC=\dfrac{45}{5}=9\)
Vậy BC = 9(cm)
Câu 1:
Độ dài BC bằng:
\(S_{ABC}=\frac{AH.BC}{2}\\ =>BC=\frac{S_{ABC}.2}{AH}=\frac{45.2}{10}=9\left(cm\right)\)
Câu 1:
Cạnh BC bằng:
\(S_{ABC}=\frac{AH.BC}{2}\\ =>BC=\frac{S_{ABC}.2}{AH}=\frac{45.2}{10}=9\left(cm\right)\)
Câu 6:
A B C D
Giải:
Xét \(\Delta ABC\left(\widehat{B}=90^o\right)\) có:
\(AB^2+BC^2=AC^2\)
\(\Rightarrow\sqrt{2^2}+\sqrt{2^2}=AC^2\)
\(\Rightarrow AC^2=4\)
\(\Rightarrow AC=2\)
Vậy đường chéo là 2 cm
Câu 7:
Vì \(x^2+3>0\) nên để B đạt giá trị lớn nhất thì \(x^2+3\) nhỏ nhất
Ta có: \(x^2\ge0\)
\(\Rightarrow x^2+3\ge3\)
\(\Rightarrow\frac{9}{x^2+3}\le\frac{9}{3}=3\)
Vậy \(MAX_B=3\) khi x = 0
Câu 8:
Giải:
\(B\in Z\Rightarrow2x-3⋮2x+1\)
\(\Rightarrow\left(2x+4\right)-7⋮2x+1\)
\(\Rightarrow2\left(x+2\right)-7⋮2x+1\)
\(\Rightarrow7⋮2x+1\)
\(\Rightarrow2x+1\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{0;-1;3;-4\right\}\)
Vậy \(x\in\left\{-4;-1;0;3\right\}\)