Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Evaluate the expression at
x3 + 12x + 48x + 64
= (x + 4)2
= (- 4 + 4)2
= 02
= 0
Fill in the blank: ............
x3 - a = (x - 2)(x2 + 2x + 4)
x3 - a = x3 - 8
a = 8
Evaluate , given and .
Answer:
a + b = 8
(a + b)2 = 82
a2 + b2 + 2ab = 64
a2 + b2 + 2 . 10 = 64
a2 + b2 + 20 = 64
a2 + b2 = 64 - 20
a2 + b2 = 44
(a - b)2
= a2 - 2ab + b2
= 44 - 2 . 10
= 44 - 20
= 24
Given .
Evaluate A at .
Answer: A
A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2
= x3 - 125 - x3 - 3x2 + 3x2
= - 125
Given .
Evaluate A at .
Answer: A
Answer: .
Given and . Evaluate .
Answer:
10) Đặt biểu thức là A
\(A=x^2-x+1\)
\(\Leftrightarrow A=x^2-2.x.\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\frac{1}{2}^2+1\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Vậy điền dấu lớn hơn
9) Đặt biểu thức là B
\(B=-x^2+x-1\)
\(B=-\left(x^2-x+1\right)\)
\(B=-\left(x^2-2.x.\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\right)\)
\(B=-\left(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)Vậy điền dấu bé
Câu 7:
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A=\left(x-3\right)^2=21\ge21\)
Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)
Vậy \(MIN_A=21\) khi x = 3
Câu 10:
\(A=4x^2+4x+11\\ =\left[\left(2x\right)^2+2.2x.1+1\right]+10\\ =\left(2x+1\right)^2+10\ge10\left(\forall x\in Z\right)\)
Vậy: \(Min_A=10\) khi \(x=-\frac{1}{2}\)
Câu 4:
A B C D
Giải:
Gọi hình vuông đó là ABCD, đường chéo là BD
Ta có: AB = BC = CD = DA
Xét \(\Delta ABD\left(\widehat{A}=90^o\right)\), áp dụng định lí Py-ta-go ta có:
\(AD^2+AB^2=BD^2\)
\(\Rightarrow2AB^2=50\)
\(\Rightarrow AB^2=25\)
\(\Rightarrow AB=5\)
\(\Rightarrow AB=BC=CD=DA=5\)
Vậy...
Câu 5:
Ta có: \(x+y=7\)
\(\Rightarrow\left(x+y\right)^2=49\)
\(\Rightarrow x^2+2xy+y^2=49\)
\(\Rightarrow2xy+25=49\)
\(\Rightarrow2xy=24\)
\(\Rightarrow xy=12\)
Vậy xy = 12
Câu 1: 4cm
Câu 2: 6cm
Câu 3: 90o
Câu 4: -108
Câu 5: 2
Câu 6: 14
Câu 7: 43
Câu 8: -1
Câu 9: -3
Câu 10: -26
câu 7 mk bấm nhầm đáp án là 120
qua B kẻ đường thẳng song song với AM cắt AC ở N.
vì AM là phân giác góc BAC nên có :
\(\dfrac{AC}{AB}=\dfrac{CM}{BM}=\dfrac{12}{6}=2\) suy ra \(\dfrac{CM}{BC}=\dfrac{CM}{CM+BM}=\dfrac{12}{12+6}=\dfrac{2}{3}\)
vì AM song song với BN nên có :
1,\(\dfrac{CA}{AN}=\dfrac{CM}{BM}=\dfrac{12}{AN}=2\) suy ra AN=6
2,\(\dfrac{AM}{BN}=\dfrac{CM}{BC}=\dfrac{2}{3}=\dfrac{4}{BN}\)suy ra BN=6
vì AB=6 nên tam giác ABN đều
suy ra \(\widehat{NAB}\)=\(60^0\)
mà \(\widehat{NAB}+\widehat{BAC}=\)\(180^0\)
nên \(\widehat{BAC}=\)\(120^0\)
bài này bữa mình thi có 50đ à