Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Song Thương: cái này bạn phải tự sửa và update phía dưới chứ, vì là đề của bạn chứ mình có biết đề bạn cụ thể thế nào đâu? Đề cho $m,n$ nhưng ở dưới biểu thức lại là $x,y$ rất không liên quan.
Câu 8:
$(x-1)(2+x)>0$ thì có 2 TH xảy ra:
TH1: \(\left\{\begin{matrix} x-1>0\\ x+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ x>-2\end{matrix}\right.\Rightarrow x>1\)
TH2: \(\left\{\begin{matrix} x-1< 0\\ x+2< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 1\\ x< -2\end{matrix}\right.\Rightarrow x< -2\)
Vậy $x\in (1;+\infty)$ hoặc $x\in (-\infty; -2)$
Câu 7:
$|x^2+x-12|=|(x-3)(x+4)|$
Nếu $x\geq 3$ thì $(x-3)(x+4)\geq 0$
$\Rightarrow |x^2+x-12|=x^2+x-12$
BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)
Nếu $3> x> -4(1)$ thì $(x-3)(x+4)< 0$
$\Rightarrow |x^2+x-12|=-(x^2+x-12)$
BPT trở thành: $-(x^2+x-12)< x^2+x+12$
$\Leftrightarrow 2(x^2+x)>0\Leftrightarrow x>0$ hoặc $x< -1$
Kết hợp với $(1)$ suy ra $3>x>0$ hoặc $-1> x> -4$
Nếu $x\leq -4$ thì $(x-3)(x+4)\geq 0$
$\Rightarrow |x^2+x-12|=x^2+x-12$
BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)
Vậy BPT có nghiệm $x\in (+\infty; 0)$ hoặc $x\in (-\infty; -1)$
Câu 1:
\(VT=\dfrac{\sin x}{\cos x}:\sin x-\dfrac{\sin x}{\dfrac{\cos x}{\sin x}}\)
\(=\dfrac{1}{\cos x}-\dfrac{\sin^2x}{\cos x}=\dfrac{\cos^2x}{\cos x}=\cos x\)
=VP
có thế mà cũng nhầm nhưng 1 điều mình mới học lớp 5 nên không thể trả lời câu hỏi của lớp 7
* Chú ý: Mk làm đại nên cx k bik đúng hay sai nx
Giải:
Ta có: \(\overline{X}\) = \(\frac{5.n+6.5+9.2+10.1}{n+5+2+1}\)
Thay: 6,8 = \(\frac{5.n+6.5+9.2+10.1}{n+5+2+1}\)
= \(\frac{5n+58}{n+8}\)
-> 6,8 (n+8) = 5n + 58
6,8 . 8 + 8n = 58 + 5n
54,4 + 8n = 5n + 58
=> 8n - 5n = 58 - 54,4
3n = 3,6
=>> n = 3,6 : 3
Vậy n = 1,2
cách 1:
ta có : \(\overline{x}=\dfrac{1}{N}\sum\limits^m_{i=1}x_in_i=\dfrac{x_1n_1+x_2n_2+...+x_mn_m}{N}\)
\(\Leftrightarrow\overline{x}=\dfrac{8.2+5.15+2.3+6.10}{30}\simeq5,23\)
\(\Rightarrow S^2=\dfrac{1}{N}\sum\limits^N_{i=1}n_i\left(x_i-\overline{x}\right)^2=\dfrac{2.\left(8-5,23\right)^2+15.\left(5-5,23\right)^2+3.\left(2-5,23\right)^2+10.\left(6-5,23\right)^2}{30}\)
\(\Leftrightarrow S^2=1,7789\)
cách 2 :
ta có : \(S^2=\dfrac{1}{N}\sum\limits^N_{i=1}x_in_i-\dfrac{1}{N^2}\left(\sum\limits^N_{i=1}x_in_i\right)^2\)
thế số vào tính là ra