\(\dfrac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{2}{\sqrt{2}+1}-\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

\(\dfrac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}+\dfrac{2}{\sqrt{2}+1}-\dfrac{4}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}+\dfrac{2\sqrt{2}}{2+\sqrt{2}}-\dfrac{4\sqrt{2}+4}{2+\sqrt{2}}\)

\(=\sqrt{3}+\sqrt{3}+\dfrac{-2\sqrt{2}-4}{2+\sqrt{2}}\)

\(=2\sqrt{3}+\dfrac{-2\left(2+\sqrt{2}\right)}{2+\sqrt{2}}\)

\(=2\sqrt{3}-2\)

\(------\)

\(\dfrac{4}{\sqrt{5}+1}+\dfrac{5}{\sqrt{5}+2}+\dfrac{5}{\sqrt{5}+3}\)

\(=\dfrac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}+\dfrac{5\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\dfrac{5\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)}\)

\(=\dfrac{4\sqrt{5}-4}{5-1}+\dfrac{5\sqrt{5}-10}{5-4}+\dfrac{5\sqrt{5}-15}{5-9}\)

\(=5\sqrt{5}-10+\left(\dfrac{4\sqrt{5}-4}{4}+\dfrac{5\sqrt{5}-15}{-4}\right)\)

\(=\dfrac{4\cdot\left(5\sqrt{5}-10\right)}{4}+\left(\dfrac{4\sqrt{5}-4}{4}-\dfrac{5\sqrt{5}-15}{4}\right)\)

\(=\dfrac{20\sqrt{5}-40}{4}+\dfrac{-\sqrt{5}+11}{4}\)

\(=\dfrac{19\sqrt{5}-29}{4}\)

#Ayumu

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

16 tháng 7 2017

\(\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)

\(=\dfrac{2\left(1+\sqrt{2}\right)-2\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)

\(=\dfrac{2+2\sqrt{2}-2+2\sqrt{2}}{1-2}=-4\sqrt{2}\)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left[-\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-3\)

\(\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)

\(=\dfrac{2\left(7-4\sqrt{3}\right)+2\left(7+4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\dfrac{14-8\sqrt{3}+14+8\sqrt{3}}{49-48}\)

= 28

16 tháng 7 2017

\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)

\(=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{4}{6-2\sqrt{5}}}\)

\(=\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{5}-1\right)-2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{2\sqrt{5}-2-2\sqrt{5}-2}{5-1}\)

= - 1

\(\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)

\(=\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)}\)

\(=-2-2\sqrt{3}-\sqrt{3}=-2-3\sqrt{3}\)

\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)

\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\) (nhân [căn 2] vào cả tử và mẫu)

\(=\dfrac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)

\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{2\left(5-\sqrt{5}\right)}{25-5}=\dfrac{5-\sqrt{5}}{10}\)

1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)

2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)

3: \(=\sqrt{3}+1-\sqrt{3}=1\)

 

16 tháng 10 2018

2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)

4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)

19 tháng 10 2022

1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)

3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)

\(=\sqrt{5}-2-3-\sqrt{5}=-5\)

4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)

5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)

6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)

8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)

\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)

\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)

1: \(=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)

2: \(=\dfrac{4+2\sqrt{3}+4-2\sqrt{3}}{2}=\dfrac{8}{2}=4\)

4: \(=\dfrac{-3+5\sqrt{3}}{11}+\dfrac{3+5\sqrt{3}}{11}=\dfrac{10\sqrt{3}}{11}\)

a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\sqrt{7}-4+\dfrac{23}{9}\sqrt{7}+\dfrac{16}{9}\)

\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)

b:\(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5}{6}\sqrt{6}\)

\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)

c: \(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\sqrt{\dfrac{5-2\sqrt{6}}{12}}\)

\(=\dfrac{1}{3}\sqrt{3}+\dfrac{1}{6}\sqrt{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)

 

a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)

c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)

\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)

2 tháng 9 2017

1/

\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{4-3}{2-\sqrt{3}}\)

\(=\sqrt{3}+2+\sqrt{2}-\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2-\sqrt{3}}\)

\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)

\(=\sqrt{2}\)

2/

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\sqrt{5}+\sqrt{2}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(5-2\right)=-3\)

#F.C

3 tháng 9 2017

máy câu còn lại thì sao

9 tháng 7 2018

a) \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)

b) \(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}=\dfrac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{3-1}=1\)

c) \(2\sqrt{5}-3\sqrt{45}+\sqrt{500}=2\sqrt{5}-9\sqrt{5}+10\sqrt{5}=3\sqrt{5}\)

d) \(\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\sqrt{3}=\dfrac{1-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\dfrac{1-3-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-2-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=-\sqrt{2}\)

e) \(\dfrac{1}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}+5\sqrt{3}=\dfrac{2-\sqrt{3}-\left(2+\sqrt{3}\right)}{4-3}+5\sqrt{3}=-2\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)

f) \(\sqrt{3}-\sqrt{4+2\sqrt{3}}=\sqrt{3}-\left(\sqrt{3}+1\right)=-1\)

g) \(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\sqrt{5}-\dfrac{4}{\sqrt{5}+1}=\dfrac{5+\sqrt{5}-4}{\sqrt{5}+1}=1\)

h)\(\sqrt{37-20\sqrt{3}+\sqrt{37+20\sqrt{3}}}=\sqrt{37-20\sqrt{3}+\left(5+2\sqrt{3}\right)}=\sqrt{42-18\sqrt{3}}=\sqrt{\left(3\sqrt{3}+3\right)^2+6}\)

a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\sqrt{7}-4+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)

b: \(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5\sqrt{6}}{6}\)

\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)