Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không đúng
theo mk nghĩ là bài này áp dụng dãy tỉ số = nhau
Xét C = \(\left(\dfrac{4}{1.3}+\dfrac{4}{3.5}+...+\dfrac{4}{97.99}\right)-\left(\dfrac{5}{11.12}+\dfrac{5}{12.13}+...+\dfrac{5}{98.99}\right)\)
Đặt A = \(\dfrac{4}{1.3}+\dfrac{4}{3.5}+...+\dfrac{4}{97.99}\)
B = \(\dfrac{5}{11.12}+\dfrac{5}{12.13}+...+\dfrac{5}{98.99}\)
=> C = A - B
Ta có : A = \(\dfrac{4}{1.3}+\dfrac{4}{3.5}+...+\dfrac{4}{97.99}\)
= 2 \(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}\right)\)
= \(2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
= \(2\left(1-\dfrac{1}{99}\right)=\dfrac{2.98}{99}=\dfrac{196}{99}\)
Ta có B = \(\dfrac{5}{11.12}+\dfrac{5}{12.13}+...+\dfrac{5}{98.99}\)
= \(5\left(\dfrac{1}{11.12}+\dfrac{1}{12.13}+...+\dfrac{1}{98.99}\right)\)
= \(5\left(\dfrac{1}{11}-\dfrac{1}{99}\right)=\dfrac{8.5}{99}=\dfrac{40}{99}\)
=> C = A - B = \(\dfrac{196-40}{99}=\dfrac{156}{99}=\dfrac{52}{33}\)
\(C=\dfrac{4}{1.3}+\dfrac{4}{3.5}+.....+\dfrac{4}{97.99}-\dfrac{5}{11.12}-\dfrac{5}{12.13}-.....-\dfrac{5}{98.99}\)
\(C=\left(\dfrac{4}{1.3}+\dfrac{4}{3.5}+.....+\dfrac{4}{97.99}\right)-\left(\dfrac{5}{11.12}+\dfrac{5}{12.13}+.....+\dfrac{5}{98.99}\right)\)\(C=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+.....+\dfrac{1}{97}-\dfrac{1}{99}\right)-5\left(\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+.....+\dfrac{1}{98}-\dfrac{1}{99}\right)\)\(C=2\left(1-\dfrac{1}{99}\right)-5\left(\dfrac{1}{11}-\dfrac{1}{99}\right)\)
\(C=2.\dfrac{98}{99}-5.\dfrac{8}{99}\)
\(C=\dfrac{196}{99}-\dfrac{40}{99}=\dfrac{52}{33}\)
Câu 1:
\(A\in Z\Rightarrow6n-1⋮3n+2\)
\(\Rightarrow6n+4-5⋮3n+2\)
\(\Rightarrow2\left(3n+2\right)-5⋮3n+2\)
\(\Rightarrow5⋮3n+2\)
đến đây tự lm nốt nhé
1. Để A có giá trị nguyên thì \(6n-1⋮3n+2\)
Ta có: \(\left\{{}\begin{matrix}6n-1⋮3n+2\\3n+2⋮3n+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\2\left(3n+2\right)⋮3n+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\6n+4⋮3n+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\6n-1+5⋮3n+2\end{matrix}\right.\)
\(\Rightarrow\left(6n-1+5\right)-\left(6n-1\right)⋮3n+2\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)\)
\(\Rightarrow3n+2\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow3n\in\left\{-7;\pm3;-1;\right\}\)
\(\Rightarrow n\in\left\{\pm1\right\}\)
Vậy để \(A\in Z\) thì n nhận các giá trị là: \(\pm1\)
Theo đề: \(2x+y=0\Leftrightarrow y=-2x\) \(\left(1\right)\)
Ta có:
\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)
\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)
\(\Leftrightarrow15-5x=2y-8\)
\(\Leftrightarrow15+8=2y+5x\)
\(\Leftrightarrow5x+2y=23\) \(\left(2\right)\)
Thế (1) vào (2), suy ra:
\(5x+2.\left(-2x\right)=23\)
\(\Leftrightarrow5x-4x=23\)
\(\Leftrightarrow x=23\)
\(\Rightarrow y=-2.23=-46\)
Tacó :
B = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{9^2}\) \(\Rightarrow\)Đặt D=\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)<B
\(\Rightarrow\)D= \(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-.....+\dfrac{1}{9}-\dfrac{1}{10}\) \(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow D=\dfrac{2}{5}\)
Vì D =\(\dfrac{2}{5}\) =\(\dfrac{2}{5}\)
mà D<B
\(\Rightarrow\)B>\(\dfrac{2}{5}\)(dpcm)
tuyệt đói ko chép mạng thề 100%
\(\dfrac{2x+1}{5}-\dfrac{4x-2}{4}=10x\Leftrightarrow\dfrac{4\left(2x+1\right)}{20}-\dfrac{5\left(4x-2\right)}{20}=\dfrac{10x.20}{20}\)
\(\Leftrightarrow4\left(2x+1\right)-5\left(4x-2\right)=200x\)
\(\Leftrightarrow8x+4-20x+10=200x\)
\(\Leftrightarrow8x-20x-200x=-4-10\)
\(\Leftrightarrow-228x=-14\)\(\Leftrightarrow-\dfrac{14}{-228}=\dfrac{7}{114}\)
\(\dfrac{2x+1}{5}-\dfrac{4x-2}{4}=10x\)
\(\rightarrow\dfrac{8x+4}{20}-\dfrac{20x-10}{20}=10x\)
\(\rightarrow\dfrac{\left(8x+4\right)-\left(20x-10\right)}{20}=10x\)
\(\rightarrow\dfrac{8x+4-20x+10}{20}=10x\)
\(\rightarrow\dfrac{\left(8x-20x\right)+\left(4+10\right)}{20}=10x\)
\(\rightarrow\dfrac{-12x+14}{20}=10x\)
\(\rightarrow\left(-12x\right)+14=10x.20\)
\(\rightarrow\left(-12x\right)+14=200x\)
\(\rightarrow14=200x-\left(-12x\right)\)
\(\rightarrow14=200x+12x\)
\(\rightarrow14=\left(200+12\right)x\)
\(\rightarrow14=212x\)
\(\rightarrow14:212=x\)
\(\rightarrow\dfrac{14}{212}=x\)
\(\rightarrow\dfrac{7}{106}=x\)
Vậy ... ... ...