Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{201201}{202202}=\dfrac{201}{202}\)
\(\dfrac{201201201}{202202202}=\dfrac{201}{202}\)
Do đó: \(\dfrac{201201}{202202}=\dfrac{201201201}{202202202}\)
c: \(3^{200}=9^{100}\)
\(2^{300}=8^{100}\)
mà 9>8
nên \(3^{200}>2^{300}\)
d: \(71^{50}=5041^{25}\)
\(37^{75}=50653^{25}\)
mà 5041<50653
nên \(71^{50}< 37^{75}\)
Ta có : \(x-128=\left(4\frac{20}{21}-5\right)\left(\frac{4141}{4242}-1\right):\left(\frac{636363}{646464}-1\right)\\ =>x-128=\left(-\frac{1}{21}\right):\left(-\frac{1}{42}\right):\left(-\frac{1}{64}\right)\\ =>x-128=-128\\ =>x=0\)
a, Ta có x - 128 =( \(4\frac{20}{21}-5\)):\(\left(\frac{4141}{4242}-1\right):\left(\frac{636363}{646464}-1\right)\)
\(\Rightarrow\)x-128= \(\left(\frac{104}{21}-5\right):\left(\frac{41.101}{42.101}-1\right):\left(\frac{63.10101}{64.10101}-1\right)\)
\(\Rightarrow\)x-128=\(\left(\frac{-1}{21}\right):\left(\frac{-1}{42}\right):\left(\frac{-1}{64}\right)\)
\(\Rightarrow x-128=-128\)
\(\Rightarrow x=\left(-128\right)+128\)
\(\Rightarrow x=0\)
\(A=\left(-2\right)\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{214}\right)\)
\(=2.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{215}{214}=215\)
\(B=\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)....\left(-1\frac{1}{299}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{300}{299}=\frac{300}{2}=150\)
\(C=-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{333333}{424242}\right)\)
\(=-\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=-\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=-\frac{231}{4}.\frac{4}{21}=-11\)
Ko khó đâu bn ơi
Đặt a/b=c/d=k
=> a=bk và c=dk
Xong thay vào (a^2020-b^2020)/(a^2020+b^2020)=(b^2020.k^2020-b^2020)/(b^2020.k^2020+b^2020)
= (k^2020-1)/(k^2020+1)
Tiếp tục thay vào (c^2020-d^2020)/(c^2020+d^2020)=(d^2020.k^2020-d^2020)/(d^2020.k^2020+d^2020)
= (k^2020-1)/(k^2020+1)
=> đpcm.
Đặt \(K=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2020}\)
\(=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{2020.2021}{2}}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2020.2021}\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\right)\)
\(=2\left(1-\frac{1}{2021}\right)=2.\frac{2020}{2021}=\frac{4040}{2021}\)
\(\Rightarrow D=\frac{2020}{\frac{4040}{2021}}=\frac{2021}{2}\)
\(D=\frac{202202}{1212}+\frac{202202}{2020}+\frac{202202}{3030}+\frac{202202}{4242}+\frac{202202}{5656}\)
\(D=\frac{2002.101}{101.12}+\frac{2002.101}{20.101}+\frac{2002.101}{30.101}+\frac{2002.101}{42.101}+\frac{2002.101}{56.101}\)
\(D=\frac{2002}{12}+\frac{2002}{20}+\frac{2002}{30}+\frac{2002}{42}+\frac{2002}{56}\)
\(D=\frac{1001}{6}+\frac{1001}{10}+\frac{1001}{15}+\frac{143}{3}+\frac{143}{4}\)
\(D=\frac{5005}{12}\)
đáp án là 5005/12 nhé bạn
tích cho mik nha