Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì A=\(\dfrac{15^{16}+1}{15^{17}+1}\) < 1
\(\Rightarrow\dfrac{15^{16}+1}{15^{17}+1}< \dfrac{15^{16}+1+14}{15^{17}+1+14}=\dfrac{15^{16}+15}{15^{17}+15}\) \(=\dfrac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}\) \(=\dfrac{15^{15}+1}{15^{16}+1}\)
Vậy A<B
b) A=\(\dfrac{2006^{2007}+1}{2006^{2006}+1}>1\)
\(\Rightarrow\dfrac{2006^{2007}+1+2005}{2006^{2006}+1+2005}\)
= \(\dfrac{2006^{2007}+2006}{2006^{2006}+2006}\)
= \(\dfrac{2006\left(2006^{2006}+1\right)}{2006\left(2006^{2005}+1\right)}\)
= \(\dfrac{2006^{2006+1}}{2006^{2005}+1}\)
Vậy A>B
1/3+1/6+1/10+...+2/x(x+1)=998/1000
2/6+2/12+2/20+...+2/x(x+1)=998/1000
2[1/2.3+1/3.4+1/4.5+...+1/x(x+1)]=998/1000
2[1/2-1/3+1/3-1/4+1/4-1/5+...+1/x+1/(x+1)]=998/1000
2.[1/2-1/(x+1)]=998/1000
1/2-1/(x+1)=499/1000
1/(x+1)=1/2-499/1000
1/(x+1)=1/1000
=> x=999
a: 51/56=1-5/56
61/66=1-5/66
mà -5/56<-5/66
nên 51/56<61/66
b: 41/43<1<172/165
c: \(\dfrac{101}{506}>0>-\dfrac{707}{3534}\)
a, Ta có:
\(-5< 0;\dfrac{1}{63}>0\Rightarrow-5< \dfrac{1}{63}\)
b, Ta có:
\(-\dfrac{18}{17}< -1;\dfrac{999}{-1000}>-1\Rightarrow-\dfrac{18}{17}< \dfrac{999}{-1000}\)
c, Ta có:
\(-\dfrac{17}{35}>-\dfrac{1}{2};-\dfrac{43}{85}< -\dfrac{1}{2}\Rightarrow-\dfrac{17}{35}>-\dfrac{43}{85}\)
d, Ta có:
\(-0,76=-\dfrac{19}{25}\)
Vì \(25< 28\Rightarrow\dfrac{19}{25}>\dfrac{19}{28}\Rightarrow-\dfrac{19}{25}< -\dfrac{19}{28}\)
Chúc bạn học tốt!!!
\(\dfrac{2006\times2005-1}{2004\times2006+2005}=\dfrac{2006\times\left(2004+1\right)-1}{2004\times2006+2005}\)
\(=\dfrac{2004\times2006+2006-1}{2004\times2006+2005}=\dfrac{2004\times2006+2005}{2004\times2006+2005}\)
\(=1\)
\(18\times\left(\dfrac{19191919+88888}{21212121+99999}\right)=18\times\left(\dfrac{19}{21}+\dfrac{8}{9}\right)\)
\(=18\times\dfrac{113}{63}=\dfrac{226}{7}=32\dfrac{2}{7}\)
\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{3^2}+.....+\dfrac{1000}{2^{1000}}\)
\(2B=2\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{3^3}+.....+\dfrac{1000}{2^{1000}}\right)\)
\(2B=1+1+\dfrac{3}{2^2}+......+\dfrac{1000}{2^{999}}\)
\(2B-B=\left(2+\dfrac{3}{2^2}+.....+\dfrac{1000}{2^{999}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.....+\dfrac{1000}{2^{999}}\right)\)\(2B-B=2-\dfrac{1}{2}-\dfrac{2}{2^2}-\dfrac{1000}{2^{999}}\)
\(B=1-\dfrac{1000}{2^{999}}\)