Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{5}{7}-\dfrac{33}{8}=-\dfrac{191}{56}\\ b,=\left(\dfrac{12}{17}+\dfrac{5}{17}\right)+\left(\dfrac{19}{7}+\dfrac{3}{7}\right)=1+3=4\\ c,=\left(0,125\cdot8\right)^{12}-\left(\dfrac{45}{15}\right)^3=1-3^3=-26\\ d,=\left(-\dfrac{1}{3}\right)\left(5\dfrac{2}{7}-2\dfrac{2}{7}\right)=-\dfrac{1}{3}\cdot3=-1\\ e,=\dfrac{3^4\cdot3^6}{3^9}=3\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
A = \(\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\dfrac{5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}\)
A = \(\dfrac{3.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\)
A = - \(\dfrac{3}{5}\)
a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}=\dfrac{x+1}{14}+\dfrac{x+1}{15}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+1\right)\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}=\dfrac{x+1}{14}+\dfrac{x+1}{15}\)
<=> \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}-\dfrac{x+1}{14}-\dfrac{x+1}{15}=0\)
<=> \(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
Do: \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{14}>0\) nên x + 1 = 0
Vậy x = -1
a) \(\dfrac{-12}{15}+\dfrac{-4}{26}=\dfrac{-4}{5}+\dfrac{-2}{13}=\dfrac{-52-10}{65}=\dfrac{-62}{65}\)
b) \(5\dfrac{1}{3}-2\dfrac{4}{5}=\dfrac{16}{3}-\dfrac{14}{5}=\dfrac{80}{15}-\dfrac{42}{15}=\dfrac{38}{15}\)
c) \(\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)+\dfrac{-5}{10}=\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{1}{2}=\dfrac{56}{70}+\dfrac{20}{70}-\dfrac{35}{70}=\dfrac{41}{70}\)
d) \(-1\dfrac{2}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-9}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-54}{42}+\dfrac{9}{42}-\dfrac{10}{42}=\dfrac{-55}{42}\)
e) \(12-\dfrac{11}{121}+\left(\dfrac{-8}{9}\right)-\left(-\dfrac{3}{7}\right)\)
\(=12-\dfrac{11}{121}-\dfrac{8}{9}+\dfrac{3}{7}\)
\(=\dfrac{91476}{7623}-\dfrac{693}{7623}-\dfrac{6776}{7623}+\dfrac{3267}{7623}\)
\(=\dfrac{7934}{693}\)
\(\dfrac{0.375-0.3+\dfrac{3}{11}+\dfrac{3}{12}}{-0.625+0.5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1.5+1-0.75}{2.5+\dfrac{5}{3}-1.25}\)
=\(\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\dfrac{5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)
=\(\dfrac{3.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{-5.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}+\dfrac{3\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}\)
=\(\dfrac{3}{-5}+\dfrac{3}{5}\)
=\(0\)
\(=\left(\dfrac{1}{12}+\dfrac{11}{12}\right)+\left(\dfrac{1}{5}-\dfrac{6}{5}\right)+\dfrac{1}{71}=1-1+\dfrac{1}{71}=\dfrac{1}{71}\)