Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
Bài 8:
\(M=1+\frac{4}{\sqrt{x}+1}\)
Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên
Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương
$\Rightarrow \sqrt{x}+1=\frac{4}{t}$
$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$
$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$
Mà $t$ nguyên dương suy ra $t=1;2;3;4$
Kéo theo $x=9; 1; \frac{1}{9}; 0$
Kết hợp đkxđ nên $x=0; \frac{1}{9};9$
Bài 9:
$P=1+\frac{5}{\sqrt{x}+2}$
Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên
Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$
$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$
$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$
Với $t>0\Rightarrow 5-2t\geq 0$
$\Leftrightarrow t\leq \frac{5}{2}$
Vì $t$ nguyên dương suy ra $t=1;2$
$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)
Đk:x \(\ge0\)
+) x không là số chính phương
=> \(\sqrt{x}\) là số vô tỉ (loại)
+) x là số chính phương
\(A=3+\dfrac{\sqrt{x}-5}{2\sqrt{x}+1}\)
Để A nhận giá trị nguyên dương
\(\Rightarrow\left(\sqrt{x}-5\right)⋮\left(2\sqrt{x}+1\right)\)
\(\Leftrightarrow\left(2\sqrt{x}-10\right)⋮\left(2\sqrt{x}+1\right)\)
\(\Leftrightarrow-11⋮\left(2\sqrt{x}+1\right)\)
\(\Rightarrow\left(2\sqrt{x}+1\right)\inƯ\left(11\right)=\left\{1;11\right\}\left(2\sqrt{x}+1>0\right)\)
\(2\sqrt{x}+1\) | 1 | 11 |
\(\sqrt{x}\) | 0 | 5 |
\(x\) | 0 | 25 |
Thay vào => x=25
\(\dfrac{\sqrt{x}+5}{2\left(\sqrt{x}-3\right)}< 0\left(ĐK:x\ge0\right)\)
<=> \(\dfrac{\sqrt{x}+5}{2\left(\sqrt{x}-3\right)}< \dfrac{0}{2\left(\sqrt{x}-3\right)}\)
<=> \(\sqrt{x}+5< 0\)
<=> \(\sqrt{x}< -5\)
<=> \(x< 25;\left(x\ge0\right)\)
<=> \(0\le x< 25\)
\(ĐK:x\ge0;x\ne9\\ BPT\Leftrightarrow2\left(\sqrt{x}-3\right)< 0\left(\sqrt{x}+5\ge5>0\right)\\ \Leftrightarrow\sqrt{x}-3< 0\left(2>0\right)\\ \Leftrightarrow x< 9\\ \Leftrightarrow0\le x< 9\)
Bạn nên ghi đầy đủ đề cũng như điều kiện của $x$ để được hỗ trợ tốt hơn.