K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2023

Đk:x \(\ge0\)

+) x không là số chính phương

=> \(\sqrt{x}\) là số vô tỉ (loại)

+) x là số chính phương

\(A=3+\dfrac{\sqrt{x}-5}{2\sqrt{x}+1}\)

Để A nhận giá trị nguyên dương

\(\Rightarrow\left(\sqrt{x}-5\right)⋮\left(2\sqrt{x}+1\right)\)

\(\Leftrightarrow\left(2\sqrt{x}-10\right)⋮\left(2\sqrt{x}+1\right)\)

\(\Leftrightarrow-11⋮\left(2\sqrt{x}+1\right)\)

\(\Rightarrow\left(2\sqrt{x}+1\right)\inƯ\left(11\right)=\left\{1;11\right\}\left(2\sqrt{x}+1>0\right)\)

\(2\sqrt{x}+1\)111
\(\sqrt{x}\)05
\(x\)025

Thay vào => x=25

 

4 tháng 4 2022

\(a,\)

\(=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+3x}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

Vậy \(P=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

\(b,\)Thay \(P=\dfrac{6}{5}\) vào pt, ta có :

\(\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}=\dfrac{6}{5}\)

\(\Leftrightarrow5\left(3\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)

\(\Leftrightarrow15\sqrt{x}+5-18\sqrt{x}+6=0\)

\(\Leftrightarrow-3\sqrt{x}+11=0\)

\(\Leftrightarrow-3\sqrt{x}=-11\)

\(\Leftrightarrow\sqrt{x}=\dfrac{11}{3}\)

\(\Leftrightarrow x=\left(\dfrac{11}{3}\right)^2\)

\(\Leftrightarrow x=\dfrac{121}{9}\)

Vậy \(x=\dfrac{121}{9}\) thì \(P=\dfrac{6}{5}\)

 

 

25 tháng 6 2023

loading...  

28 tháng 9 2021

\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(đk:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

Để A nguyên thì: \(x+\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Mà \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x+\sqrt{x}+1\in\left\{1;2\right\}\)

+ Với \(x+\sqrt{x}+1=1\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=0\left(tm\right)\left(do.\sqrt{x}+1\ge1>0\right)\)

+ Với \(x+\sqrt{x}+1=2\)

\(\Leftrightarrow\left(x+\sqrt{x}+\dfrac{1}{4}\right)=\dfrac{5}{4}\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\\sqrt{x}+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{5}-1}{2}\\\sqrt{x}=-\dfrac{\sqrt{5}+1}{2}\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3-\sqrt{5}}{2}\left(tm\right)\)

Vậy \(S=\left\{1;\dfrac{3-\sqrt{5}}{2}\right\}\)

21 tháng 4 2016

a)ĐK: x khác 1; x>0

A=\(\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)+\(\frac{2\sqrt{x}}{x-1}\)-\(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)=\(\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{2}{\sqrt{x}}\)

b) Để A nhận giá trị nguyên thì \(\sqrt{x}\in\)Ước của  2=>\(\sqrt{x}=2;\sqrt{x}=-2\)(loại)=>x=4

30 tháng 12 2020

a) A= \(\dfrac{\sqrt{x}}{\sqrt{x-2}}-\dfrac{4}{x-2\sqrt{x}}=\dfrac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\sqrt{x}}=\dfrac{x+2\sqrt{x}}{x}\)

b) Ta có x >0  nên \(\sqrt{x}\) >0 

 <=>  \(2\sqrt{x}\)  > 0 

 <=>  \(x+2\sqrt{x}\)  > x 

 <=> \(\dfrac{x+2\sqrt{x}}{x}\)  > \(\dfrac{x}{x}\)

 hay A > 1

c) 

 

30 tháng 12 2020

còn câu c bạn?

 

29 tháng 11 2021

undefinedundefinedundefined

Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Để A nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

\(\Leftrightarrow2⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{-2;-1;1;2\right\}\)

Vậy: Có 4 giá trị nguyên của x thỏa mãn yêu cầu đề bài