Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách tính đúng là: \(\frac{a+b+c}{3}\)
Cách tính của bạn An là: \(\frac{\frac{a+b}{2}+c}{2}=\frac{a+b+2c}{4}\)
Ta có: \(\frac{a+b+c}{3}\)\(-\frac{a+b+2c}{4}\)
\(=\frac{4a+4b+4c-3a-3b-6c}{12}\)
\(=\frac{a+b-2c}{12}=\frac{\left(a-c\right)+\left(b-c\right)}{12}>0\)(vì a > b > c)
Vậy \(\frac{a+b+c}{3}\)\(>\frac{a+b+2c}{4}\)
=> đpcm...
Nếu lấy trung bình cộng 3 số a, b,c thì ta được kết quả: \(\frac{a+b+c}{3}\)
Nếu lấy trung bình cộng của a và b, rồi lấy trung bình cộng của kết quả này với c, ta được kết quả: \(\frac{\frac{a+b}{2}+{c}}{2}\)
Ta xét biểu thức \(\frac{a+b+c}{3}-\frac{\frac{a+b}{2}+{c}}{2}=\frac{a+b+c}{3} - \frac{a+b+2c}{4}=\frac{4a+4b+4c-3a-3b-6c}{12}=\frac{a+b-2c}{12}\)
Đến đây, vì \(a>b>c \Rightarrow a+b>2c \iff a+b-2c>0 \iff \frac{a+b-2c}{12}>0\)
Từ đây ta có thể suy ra \(\frac{a+b+c}{3}>\frac{\frac{a+b}{2}+c}{2} \Rightarrow đpcm\)
Ta có: \(\frac{a+b}{2}=15\Rightarrow a+b=15.2=30\left(1\right)\)
\(\frac{b+c}{2}=7\Rightarrow b+c=7.2=14\left(2\right)\)
\(\frac{c+a}{2}=11\Rightarrow c+a=11.2=22\left(3\right)\)
Cộng (1), (2), (3) vế theo vế ta được:
\(2.\left(a+b+c\right)=30+14+22=66\)
\(\Rightarrow a+b+c=66:2=33\)
Rồi bạn trừ tổng a+b+c cho tổng a+b, b+c, c+a là được.
Đáp án: \(a=19,b=11,c=3\)
tùy trường hợp nếu tổng 13 số kia lớn hơn tổng 14 số thì TBC của 13 số lớn hơn
tổng 13 số kia bé hơn tổng 14 số thì TBC của 13 số bé hơn hơn
cách tính trên sai
chỉ cần lấy (a+b+c):3 là ok
tick cko mình nhé