Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐẶT BIỂU THỨC TRÊN LÀ M
TA CÓ \(2M=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{64}\)
\(\Rightarrow2M-M=1+\frac{1}{2}+\frac{1}{4}+..+\frac{1}{64}-\frac{1}{2}+\frac{1}{4}+..+\frac{1}{128}\)
\(\Rightarrow M=1+\frac{1}{28}\)
A= \(\frac{1}{2}\)+\(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
2A=2(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\))
=1+\(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)
2A-A= (\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\)) -(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\))
A=1-\(\frac{1}{128}\)
A=\(\frac{127}{128}\)
Đặt :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Leftrightarrow\)\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(\Leftrightarrow\)\(A=1-\frac{1}{2^7}\)
Vậy \(A=1-\frac{1}{2^7}\)