K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2019

11 tháng 5 2017

18 tháng 5 2018

22 tháng 10 2017

5 tháng 10 2015

ta có:

\(y'=\frac{\left(\frac{1-x^2}{1+x^2}\right)'}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-2x.\left(1+x^2\right)-2x.\left(1-x^2\right)}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-4x}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{-4x}{\left(1+x^2\right)\left(1-x^2\right)}=\frac{-4x}{1-x^4}\)

1 tháng 8 2018

3 tháng 10 2019

Đáp án A.

Phương pháp: Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x0 là: 

Cách giải: Ta có: 

Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 1 là: 

24 tháng 4 2017

Đáp án B

∫ 1 e x + 1 d x = ∫ d x - ∫ e x e x + 1 d x = x - ln ( e x + 1 ) + C  

Vì F ( 0 ) = = - ln 2 ⇔ C = 0 ⇒ F ( x ) = x - ln e x + 1  

 

Xét phương trình F ( x ) + ln ( e x + 1 ) = 3 ⇔ x = 3  

 

23 tháng 10 2017

Đáp án C

Đồ thị hàm số y = f'(x) không cắt trục hoành

Hay phương trình f'(x) = 0 vô nghiệm