Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5+5^2 +5^3 +5^4...+5^99+5^100
= ( 5+5^2)+(5^3+5^4)+....+(5^99+5^100)
= 5(1+5)+5^3(1+5)+....+5^99(1+5)
= 5.6+5^3.6+....+5^99.6
= (5+5^3+....+5^99).6
Vì (5+5^3+....+5^99).6 chia hết cho 6 nên 5+5^2 +5^3 +5^4...+5^99+5^100 chia hết cho 6.
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
\(A=\dfrac{5}{4}+\dfrac{5}{4^2}+\dfrac{5}{4^3}+...+\dfrac{5}{4^{99}}\\ 4A=5+\dfrac{5}{4}+\dfrac{5}{4^2}+...+\dfrac{5}{4^{98}}\\ 4A-A=\left(5+\dfrac{5}{4}+\dfrac{5}{4^2}+...+\dfrac{5}{4^{98}}\right)-\left(\dfrac{5}{4}+\dfrac{5}{4^2}+\dfrac{5}{4^3}+...+\dfrac{5}{4^{99}}\right)\\ 3A=5-\dfrac{5}{4^{99}}\\ A=\left(5-\dfrac{5}{4^{99}}\right):3\\ A=\dfrac{5}{3}-\dfrac{5}{4^{99}}:3\\ A=\dfrac{5}{3}-\dfrac{5}{4^{99}\cdot3}< \dfrac{5}{3}\)
Vậy \(A< \dfrac{5}{3}\)
5^2+5^3+5^4+...+5^98+5^99=(5^2+5^3)+(5^4+5^5)+...+(5^98+5^99)=5^2.(1+5)+5^4.(1+5)+...+5^98.(1+5)=5^2.6+5^4.6+...+5^98.6=6.(5^2+5^4+...+5^98)=5^2+5^4+...+5^98 chia hết cho 6
1.
Ta có:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> 1/2*3/4*5/6*...*99/100 < 2/3*4/5*6/7*...*100/101
=> A < B
2.
\(A\cdot B=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(A\cdot B=\frac{\left[1\cdot3\cdot5\cdot7\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot9\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
3.
Vì A < B => A.A < A.B => A2 < 1/101 < 1/100
Mà A2 < 1/100 <=> A2 < \(\frac{1}{10}^2\)=> A < 1/10
D=5/4+5/4^2+5/4^3+....+5/4^99
4D=4(5/4+5/4^2+5/4^3+....+5/4^99)
4D=5+5/4+5/4^2+5/4^3+....+5/4^98
Lấy 4D-D=(5+5/4+5/4^2+5/4^3+....+5/4^98)-(5/4+5/4^2+5/4^3+....+5/4^99)
=>3D=5-5/4^99
D=5/3-5/3x4^99<5/3
=>d<5/3(ĐPCM)
`Answer:`
\(D=\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+\frac{5}{4^4}+...+\frac{5}{4^{99}}\)
\(\Rightarrow4D=5+\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{98}}\)
\(\Rightarrow4D-D=\left(5+\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{98}}\right)-\left(5+\frac{5}{4^2}+\frac{5}{4^3}+\frac{5}{4^4}+...+\frac{5}{4^{99}}\right)\)
\(\Rightarrow3D=5-\frac{5}{4^{99}}\)
\(\Rightarrow D=\left(5-\frac{5}{4^{99}}\right):3\)
\(\Rightarrow D=\frac{5}{3}-\frac{5}{4^{99}.3}< \frac{5}{3}\)
Vậy `D<5/3`