Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bn tự ghi lại.
Ta biểu diển tổng A dưới dạng khác:
\(A=\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6.\frac{10^n-1}{9}+8\)=\(\frac{\left(10^n\right)^2-1+10^n.10-1+10^n.6-6+72}{9}\)
\(=\frac{\left(10^n\right)^2+16.10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2\)
Mặt khác 10^n+8 luôn chia hết cho 3 nên biểu thức trong ngoặc là 1 số tự nhiên
=> A là scp
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)
Ta có:
\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)
\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.
Ta có đpcm.
Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)
Ta có:
\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)
\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)
\(=(3t+3)^2\) là scp.
Ta có đpcm.
câu 2: gọi là A đi.
bước 1: A>1
ta có: \(\frac{e}{d+f}>\frac{e}{d+e+f}\) (khi cùng tử, mẫu càng lớn thì p/s càng nhỏ)
tương tự thì: \(A>\frac{e}{d+f+e}+\frac{d}{d+e+f}+\frac{f}{d+e+f}=\frac{e+d+f}{d+e+f}=1\Rightarrow A>1\)
bước 2: A<2
ta có: nếu a>b thì \(\frac{a}{b}>\frac{a+m}{b+m}\); nếu a<b thì \(\frac{a}{b}
Ta có : \(D=\frac{10^{2n}-1}{9}\)
\(E=\frac{10^{n+1}-1}{9}\)
\(F=6\cdot\frac{10^n-1}{9}\)
Do đó: \(D+E+F+8=\frac{10^{2n}+10^{n+1}+6\cdot10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2=\left[\left(33.3\right)6\right]^2\)
(lưu ý: tích (33..3 6)2 có n-1 số 3)
Vậy: D+E+F+8 là số chính phương(ĐPCM)