K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

Công thức lượng giác cần nhớ

+ Về Hệ thức cơ bản

\(\sin^2\)\(a+\cos^2\)\(a=1\)

\(1+tg^2\)\(a=\frac{1}{\cos^2a}\) với \(a\ne\frac{\pi}{2}+k\pi\left(k\in Z\right)\)

\(t+cot\) \(g^2\)\(=\frac{1}{\sin^2a}\) với \(a\ne k\pi\)\(\left(k\in Z\right)\)

+ Về Phụ nhau và sai nhau(x2)

Phụ nhau: \(a\)\(\frac{\pi}{2}-a\)

* Công thức:

\(\sin\left(\frac{\pi}{2}-a\right)=\cos a\)

\(\cos\left(\frac{\pi}{2}-a\right)=\sin a\)

\(tg\left(\frac{\pi}{2}-a\right)=\cot ga\)

\(\cot g\left(\frac{\pi}{2}-a\right)=tga\)

+ Về Sai nhau(x1): \(\frac{\pi}{2}:a\)\(\frac{\pi}{2}+a\)

\(\sin\left(\frac{\pi}{2}+a\right)=\cos a\)

\(\cos\left(\frac{\pi}{2}+a\right)=-\sin a\)

\(tg\left(\frac{\pi}{2}+a\right)=-\cot ga\)

\(\cot g\left(\frac{\pi}{2}+a\right)=-tga\)

=> Từ Phụ nhau và sai nhau(x1), ta có công thức hợp thể như sau:

\(\sin\left(x+k\pi\right)=\left(-1\right)^k\)\(\sin x,k\in Z\)

\(\cos\left(x+k\pi\right)=\left(-1\right)^k\)\(\cos x,k\in Z\)

\(tg\left(x+k\pi\right)=tgx,k\in Z\)

\(\cot g\left(x+k\pi\right)=\cot gx\)

+ Về Sai nhau(x2): \(\pi:a\)\(\pi+a\)

\(\sin\left(\pi+a\right)=-\sin a\)

\(\cos\left(\pi+a\right)=-\cos a\)

\(tg\left(\pi+a\right)=t\) \(ga\)

\(\cot g\left(\pi+a\right)=\cot ga\)

+ Về Đối nhau và Bù nhau:

*Công thức:

Đối nhau: \(a\)\(-a\)

\(\sin\left(-a\right)=-\sin a\)

\(\cos\left(-a\right)=\cos a\)

\(tg\left(-a\right)=-tg\left(a\right)\)

\(\cot g\left(-a\right)=-\cot g\left(a\right)\)

Bù nhau: \(a\)\(\pi-a\)

\(\sin\left(\pi-a\right)=\sin a\)

\(\cos\left(\pi-a\right)=-\cos a\)

\(tg\left(\pi-a\right)=-tga\)

\(\cot g\left(\pi-a\right)=-\cot ga\)

***************Chúc bạn học tốt**************

 

6 tháng 11 2016

bn ko hỉu chỗ nào hỏi mik nhé

12 tháng 1 2017

a) Các hằng đẳng thức lượng giác cơ bản:

sin2α + cos2α = 1

1 + tan2α = 1/(cos2α); α ≠ π/2 + kπ, k ∈ Z

1 + cot2α = 1/(sin2α); α ≠ kπ, k ∈ Z

tan⁡α.cot⁡α = 1; α ≠ kπ/2, k ∈ Z

b) Công thức cộng:

cos⁡(a - b) = cos⁡a cos⁡b + sin⁡a sin⁡b

cos⁡(a + b) = cos⁡a cos⁡b - sin⁡a sin⁡b

sin⁡(a - b) = sin⁡a cos⁡b - cos⁡a sin⁡b

sin(a + b) = sina.cosb + cosa.sinb

Giải bài tập Toán 11 | Giải Toán lớp 11

c) Công thức nhân đôi:

sin⁡2α = 2 sin⁡α cos⁡α

cos⁡2α = cos2α - sin2α = 2cos2α - 1 = 1 - 2sin2α

Giải bài tập Toán 11 | Giải Toán lớp 11

d) Công thức biến đổi tích thành tổng:

cos⁡ a cos⁡b = 1/2 [cos⁡(a - b) + cos⁡(a + b) ]

sin⁡a sin⁡b = 1/2 [cos⁡(a - b) - cos⁡(a + b) ]

sin⁡a cos⁡b = 1/2 [sin⁡(a - b) + sin⁡(a + b) ]

Công thức biến đổi tổng thành tích:

Giải bài tập Toán 11 | Giải Toán lớp 11

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Quan sát Hình 7 ta thấy:

• Tia Om quay (chỉ theo chiều dương) xuất phát từ tia Ou đến trùng với tia Ov rồi quay tiếp một số vòng đến trùng với tia cuối Ov;

• Tia Om quay (chỉ theo chiều dương) xuất phát từ tia \(O'u' \equiv Ou\) đến trùng với tia \(O'v' \equiv Ov\)rồi quay tiếp một số vòng đến trùng với tỉa cuối \(O'v' \equiv Ov\).

Như vậy, sự khác biệt giữa hai góc lượng giác (Ou, Ov) và (O’u’, O’v’) chính là số vòng quay quanh điểm O. Vì vậy, sự khác biệt giữa số đo của hai góc lượng giác đó chính là bội nguyên của \({360^ \circ }\) khi hai góc đó tính theo đơn vị độ (hay bội nguyên của \(2\pi \) rad khi hai góc đó tính theo đơn vị radian).

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Công thức tổng quát số đo của góc lượng giác \(\left(Ox,ON\right)=70^o+k\cdot360,k\in Z\)

Công thức tổng quát số đo của lượng giác 

\(\left(Ox,OP\right)=\left(Ox,OM\right)+\left(OM,OP\right)=-50-120^o+m\cdot360^o=-170^o+m\cdot360^o,m\in Z\)

30 tháng 7 2021

Giống nhau tất thảy.

NV
30 tháng 7 2021

k ở đây được hiểu là "một số nguyên bất kì", giống hay khác nhau đều được

Ví dụ: 

\(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Thì "k" trong \(\dfrac{\pi}{6}+k2\pi\) và "k" trong \(\dfrac{5\pi}{6}+k2\pi\) không liên quan gì đến nhau (nó chỉ là 1 kí hiệu, có thể k trên bằng 0, k dưới bằng 100 cũng được, không ảnh hưởng gì, cũng có thể 2 cái bằng nhau cũng được).

Khi người ta ghi 2 nghiệm đều là "k2pi" chủ yếu do... lười biếng (kiểu như mình). Trên thực tế, rất nhiều tài liệu cũ họ ghi các kí tự khác nhau, ví dụ 1 nghiệm là \(\dfrac{\pi}{6}+k2\pi\), 1 nghiệm là \(\dfrac{5\pi}{6}+n2\pi\) để tránh học sinh phát sinh hiểu nhầm đáng tiếc rằng "2 cái k phải giống hệt nhau về giá trị". 

2 tháng 8 2019

a. Mối liên hệ giữa các công thức:

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

Dựa vào các công thức trên thấy cần phải biết ít nhất 3 đại lượng để tìm được các đại lượng còn lại.

b. Ta có bảng:

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

Giải thích:

+ Với u1 = -2; un = 55; n = 20

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

+ Với d = -4 ; n = 15 ; Sn = 120

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11 

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

+ Với un = 17; n = 12; Sn = 72

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

+ Với u1 = 2; d = -5; Sn = -205.

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

⇒ un = u10 = u1 + 9d = -43.

a: tìm được 1 giá trị duy nhất tương ứng của s 

b: Có thể tìm được 2 giá trị tương ứng của t

c:

s1/81/41/2124816
t-3-2-101234
HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Vì mâm bánh xe ô tô được chia thành năm phần bằng nhau nên mỗi phần có số đo bằng \(\dfrac{360^o}{5}=72^o\)

Ta có: \(\left(ON,OM\right)=\left(ON,Ox\right)+\left(Ox,OM\right)\\ \Rightarrow\left(ON,Ox\right)=99^o\)

Công thức số đo tổng quát của góc lượng giác \(\left(ON,Ox\right)=99^o+k\cdot360^o,k\in Z\)

3 tháng 6 2019